NCERT Solutions for Class 10 Maths Chapter 2 Polynomials

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials

Komal MiglaniUpdated on 22 Aug 2025, 08:42 AM IST

Have you ever noticed how the path of a roller coaster, the trajectory of a football, or the economic trend predictions follow a certain pattern, that is the power of polynomials. Polynomials are not just some algebraic expression; they are one of the main pillars of mathematics. According to the latest syllabus, this chapter covers the basic concepts of polynomials, including the degree of Polynomials, Zeroes of a Polynomial, the Geometrical Meaning of the Zeroes of a Polynomial, and the Relationship between Zeroes and Coefficients of a Polynomial. Understanding these concepts will make students more efficient in solving problems involving polynomials and will also build a strong foundation for advanced polynomial concepts. NCERT Solutions for Class 10 can help the students immensely‌.

This Story also Contains

  1. NCERT Solutions for Class 10 Maths Chapter 2 Polynomials PDF Free Download
  2. NCERT Solutions for Class 10 Maths Chapter 2: Exercise Questions
  3. Polynomials Class 10 Solutions - Exercise Wise
  4. Polynomials Class 10 Chapter 2: Topics
  5. NCERT Solutions for Class 10 Maths Chapter 2 Polynomials: Important Formulae
  6. NCERT Solutions for Class 10 Maths: Chapter Wise
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials
polynomials

This NCERT Solutions for class 10 Maths article about Polynomials is designed by our experienced subject experts at Careers360 to offer a systematic and structured approach to these important concepts. These solutions also help students prepare well for exams and gain knowledge about the various natural processes occurring around them through a series of solved questions provided in the NCERT textbook exercises. It covers questions from all the topics and will help you improve your speed and accuracy. Many toppers rely on NCERT Solutions since they are designed as per the latest syllabus. Get all solved exercises, full syllabus notes, and a free PDF from the NCERT article.

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials PDF Free Download

Students who wish to access the NCERT solutions for Class 10 Chapter 2 can click on the link below to download the entire solution in PDF.

Download Solution PDF

NCERT Solutions for Class 10 Maths Chapter 2: Exercise Questions

Polynomials Class 10 Exercise: 2.1
Total Questions: 1
Page number: 18
Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Q1 (1): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the numbers of zeroes of p(x), in each case.

1635918537229

Answer: The number of zeroes of p(x) is zero as the curve does not intersect the x-axis.

Q1 (2): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case

1635918562539

Answer: The number of zeroes of p(x) is one as the curve intersects the x-axis only once.

Q1 (3): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case

1635918572380

Answer: The number of zeroes of p(x) is three as the graph intersects the x-axis thrice.

Q1 (4): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case

1635918582058

Answer: The number of zeroes of p(x) is two as the graph intersects the x-axis twice.

Q1 (5): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case

1635918596067

Answer: The number of zeroes of p(x) is four as the graph intersects the x-axis four times.

Q1 (6): The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case

1635918606641

Answer: The number of zeroes of p(x) is three as the graph intersects the x-axis thrice.

Polynomials Class 10 Exercise: 2.2
Total Questions: 2
Page number: 23

Q1 (i): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2-2 x-8$

Answer:

x 2 - 2x - 8 = 0

x 2 - 4x + 2x - 8 = 0

x(x-4) +2(x-4) = 0

(x+2)(x-4) = 0

The zeroes of the given quadratic polynomial are -2 and 4

$\\\alpha =-2\\, \beta =4$

VERIFICATION:

Sum of roots:

$
\begin{aligned}
& \alpha+\beta=-2+4=2 \\
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{-2}{1} \\
& =2 \\
& =\alpha+\beta
\end{aligned}
$


Verified
Product of roots:

$
\begin{aligned}
& \alpha \beta=-2 \times 4=-8 \\
& \frac{\text { constant term }}{\text { coefficient of } x^2} \\
& =\frac{-8}{1} \\
& =-8 \\
& =\alpha \beta
\end{aligned}
$

Verified

Q1 (ii): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4 s^2-4 s+1$

Answer:

$
\begin{aligned}
& 4 s^2-4 s+1=0 \\
& 4 s^2-2 s-2 s+1=0 \\
& 2 s(2 s-1)-1(2 s-1)=0 \\
& (2 s-1)(2 s-1)=0
\end{aligned}
$
The zeroes of the given quadratic polynomial are $1 / 2$ and $1 / 2$

$
\begin{aligned}
& \alpha=\frac{1}{2} \\
& \beta=\frac{1}{2}
\end{aligned}
$
VERIFICATION
Sum of roots:

$
\alpha+\beta=\frac{1}{2}+\frac{1}{2}=1
$

$
\begin{aligned}
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{-4}{4} \\
& =1 \\
& =\alpha+\beta
\end{aligned}
$
Verified
Product of roots:

$
\begin{aligned}
& \alpha \beta=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \\
& \frac{\text { constant term }}{\text { coefficient of } x^2} \\
& =\frac{1}{4} \\
& =\alpha \beta
\end{aligned}
$

Verified

Q1 (iii): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6 x^2-3-7 x$

Answer:

6x 2 - 3 - 7x = 0

6x 2 - 7x - 3 = 0

6x 2 - 9x + 2x - 3 = 0

3x(2x - 3) + 1(2x - 3) = 0

(3x + 1)(2x - 3) = 0

The zeroes of the given quadratic polynomial are -1/3 and 3/2

$
\begin{aligned}
& \alpha=-\frac{1}{3} \\
& \beta=\frac{3}{2}
\end{aligned}
$
Sum of roots:

$
\begin{aligned}
& \alpha+\beta=-\frac{1}{3}+\frac{3}{2}=\frac{7}{6} \\
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{-7}{6} \\
& =\frac{7}{6} \\
& =\alpha+\beta
\end{aligned}
$

Verified

Product of roots:

$\begin{aligned} & \alpha \beta=-\frac{1}{3} \times \frac{3}{2}=-\frac{1}{2} \\ & \frac{\text { constant term }}{\text { coefficient of } x^2} \\ & =\frac{-3}{6} \\ & =-\frac{1}{2} \\ & =\alpha \beta\end{aligned}$

Verified

Q1 (iv): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4 u^2+8 u$

Answer:
4u 2 + 8u = 0

4u(u + 2) = 0

The zeroes of the given quadratic polynomial are 0 and -2

$
\begin{aligned}
& \alpha=0 \\
& \beta=-2
\end{aligned}
$
VERIFICATION:
Sum of roots:

$
\begin{aligned}
& \alpha+\beta=0+(-2)=-2 \\
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{8}{4} \\
& =-2 \\
& =\alpha+\beta
\end{aligned}
$


Verified
Product of roots:

$
\alpha \beta=0 \times-2=0
$

$\begin{aligned} & \frac{\text { constant term }}{\text { coeff ficient of } x^2} \\ & =\frac{0}{4} \\ & =0 \\ & =\alpha \beta\end{aligned}$

Verified

Q1 (v): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $t^2-15$

Answer:
t 2 - 15 = 0

$
(t-\sqrt{15})(t+\sqrt{15})=0
$


The zeroes of the given quadratic polynomial are $-\sqrt{15}$ and $\sqrt{15}$

$
\begin{aligned}
& \alpha=-\sqrt{15} \\
& \beta=\sqrt{15}
\end{aligned}
$
VERIFICATION:
Sum of roots:

$
\begin{aligned}
& \alpha+\beta=-\sqrt{15}+\sqrt{15}=0 \\
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{0}{1} \\
& =0 \\
& =\alpha+\beta
\end{aligned}
$

Verified

Product of roots:

$\begin{aligned} & \alpha \beta=-\sqrt{15} \times \sqrt{15}=-15 \\ & \frac{\text { constant term }}{\text { coefficient of } x^2} \\ & =\frac{-15}{1} \\ & =-15 \\ & =\alpha \beta\end{aligned}$

Verified

Q1 (vi): Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $3 x^2-x-4$

Answer:
3x 2 - x - 4 = 0

3x 2 + 3x - 4x - 4 = 0

3x(x + 1) - 4(x + 1) = 0

(3x - 4)(x + 1) = 0

The zeroes of the given quadratic polynomial are 4/3 and -1

$
\begin{aligned}
& \alpha=\frac{4}{3} \\
& \beta=-1
\end{aligned}
$
VERIFICATION:
Sum of roots:

$
\begin{aligned}
& \alpha+\beta=\frac{4}{3}+(-1)=\frac{1}{3} \\
& -\frac{\text { coefficient of } x}{\text { coefficient of } x^2} \\
& =-\frac{-1}{3} \\
& =\frac{1}{3} \\
& =\alpha+\beta
\end{aligned}
$

Verified

Product of roots:

$\begin{aligned} & \alpha \beta=\frac{4}{3} \times-1=-\frac{4}{3} \\ & \frac{\text { constant term }}{\text { coefficient of } x^2} \\ & =\frac{-4}{3} \\ & =\alpha \beta\end{aligned}$

Verified

Q2 (i): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. 1/4 , -1

Answer:

$
\begin{aligned}
& \alpha+\beta=\frac{1}{4} \\
& \alpha \beta=-1
\end{aligned}
$
The required quadratic polynomial is

$
\begin{aligned}
& x^2-(\alpha+\beta)x+\alpha \beta=0 \\
& x^2-\frac{1}{4} x-1=0 \\
& 4 x^2-x-4=0
\end{aligned}
$

Q2 (ii): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. $\sqrt{2}, 1 / 3$

Answer:

$
\begin{aligned}
& \alpha+\beta=\sqrt{2} \\
& \alpha \beta=\frac{1}{3} \\
& x^2-(\alpha+\beta)x+\alpha \beta=0 \\
& x^2-\sqrt{2} x+\frac{1}{3}=0 \\
& 3 x^2-3 \sqrt{2} x+1=0
\end{aligned}
$
The required quadratic polynomial is $3 x^2-3 \sqrt{2} x+1$

Q2 (iii): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. $0, \sqrt{5}$

Answer:

$\begin{aligned} & \alpha+\beta=0 \\ & \alpha \beta=\sqrt{5} \\ & x^2-(\alpha+\beta)x+\alpha \beta=0 \\ & x^2-0 x+\sqrt{5}=0 \\ & x^2+\sqrt{5}=0\end{aligned}$

The required quadratic polynomial is x 2 + $\sqrt{5}$ .

Q2 (iv): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. 1,1

Answer:

$\begin{aligned} & \alpha+\beta=1 \\ & \alpha \beta=1 \\ & x^2-(\alpha+\beta)x+\alpha \beta=0 \\ & x^2-1 x+1=0 \\ & x^2-x+1=0\end{aligned}$

The required quadratic polynomial is x 2 - x + 1

Q2 (v): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. $-\frac{1}{4}, \frac{1}{4}$

Answer:

$\begin{aligned} & \alpha+\beta=-\frac{1}{4} \\ & \alpha \beta=\frac{1}{4} \\ & x^2-(\alpha+\beta)x+\alpha \beta=0 \\ & x^2-\left(-\frac{1}{4}\right) x+\frac{1}{4}=0 \\ & 4 x^2+x+1=0\end{aligned}$

The required quadratic polynomial is 4x 2 + x + 1

Q2 (vi): Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively. 4,1

Answer:

$\begin{aligned} & \alpha+\beta=4 \\ & \alpha \beta=1 \\ & x^2-(\alpha+\beta)x+\alpha \beta=0 \\ & x^2-4 x+1=0\end{aligned}$

The required quadratic polynomial is x 2 - 4x + 1.

Polynomials Class 10 Chapter 2: Topics

Topics you will learn in NCERT Class 10 Maths Chapter 2 Polynomials include:

  • 2.1 Introduction
  • 2.2 Geometrical Meaning of the Zeros of a Polynomial
  • 2.3 Relationship between Zeros and Coefficients of a Polynomial

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials: Important Formulae

Polynomials

A polynomial $p(x)$ is an algebraic expression that can be written in the form of

$
p(x)=a_n x^n+\ldots+a_2 x^2+a_1 x+a_0
$

Here $a_0, a_1, a_2, \ldots, a_n$ are real numbers and each power of x is a non-negative integer.

Each real number ai is called a coefficient. The number a0  that is not multiplied by a variable is called a constant. Each product  $a_i x_i$  is a term of a polynomial. The highest power of the variable that occurs in the polynomial is called the degree of the polynomial. The leading term is the term with the highest power, and its coefficient is called the leading coefficient.

Types of Polynomials

The types of polynomials based on the number of terms are

  • Monomial: A monomial is a polynomial with one term. Eg. $3x$
  • Binomial: A binomial is a polynomial with two terms. Eg. $3x+2y$
  • Trinomial: A trinomial is a polynomial with three terms. Eg. $4x^2+ 3x+2y$
  • Multinomial: A general term for polynomials with more than three terms. Eg. $7x^5+ 5x^3+3x^2+2x=1$
  • Constant Polynomial: A constant polynomial is a polynomial with no variable terms but with only a constant term. Eg. $P(x) = 5$
  • Zero Polynomial: A polynomial with coefficients as zero. Eg. $0x^2+0x, 0$

Types of polynomials (based on the degree of a polynomial)

  • Linear Polynomial: A polynomial with degree one. Eg. $3x+5y = 5$
  • Quadratic Polynomial: A Polynomial with degree two. any quadratic polynomial in $x$ is of the form $ax^2 + bx + c$, where $a, b, c$ are real numbers and $a \neq 0$. E.g. $2x^2+3x+2=0$
  • Cubic Polynomial: A Polynomial with degree three. The general form of a cubic polynomial is $ax^3 + bx^2 + cx + d$, where $a, b, c, d$ are real numbers and $a \neq 0 $. E.g. $5x^3+3x^2+2x=1$
  • Higher-degree polynomial: Polynomials with a degree of more than three. E.g. $7x^5+5x^3+3$

Zeros of a Polynomial

If a real number $k$ satisfies the given polynomial, then $k$ is a zero of that polynomial. (i.e) A real number k is the zero of the polynomial $P(x)$, if $P(k) = 0$

Example: Let $P(x) = x^2 -4$. Let $x = 2$, then $P(x) = 2^2 -4 = 4-4=0$. Therefore, $2$ is the zero of the polynomial $P(x)$.

Graphical Representation of Zeros of a Polynomial

For a polynomial p(x) of degree n, the graph of y = p(x) intersects the x-axis at most n points. Therefore, a polynomial p(x) of degree n has at most n zeroes.

The number of zeros of a polynomial can be found by the number of points of the graph of the polynomial intersecting the x-axis.

Relationship Between Zeros and Coefficients of the Polynomial

Linear Polynomial:

The zero of the linear polynomial $ax+b$ = $-\frac{b}{a}$.

Quadratic Polynomial:

For the quadratic polynomial $ax^2+bx+c=0$ with zeros $x_1$ and $x_2$,

Sum of zeros, $x_1+x_2= -\frac{b}{a}$

Product of zeros $x_1 x_2= \frac{c}{a}$

Cubic Polynomial:

For the quadratic polynomial $ax^3+bx^2+cx+d=0$ with zeros $x_1$, $x_2$ and $x_3$,

Sum of zeros, $x_1+x_2= -\frac{b}{a}$

Sum of product of two zeros, $x_1 x_2+x_2 x_3+x_3 x_1= \frac{c}{a}$

Product of zeros $x_1 x_2= -\frac{d}{a}$

NCERT Solutions for Class 10 Maths: Chapter Wise

We at Careers360 compiled all the NCERT class 10 Maths solutions in one place for easy student reference. The following links will allow you to access them.

NCERT Solutions of Class 10 - Subject Wise

Students can use the following link to check the solutions of science-related questions in the NCERT book in depth.

NCERT Exemplar solutions - Subject-wise

After completing the NCERT textbooks, students should practice exemplar exercises for a better understanding of the chapters and clarity. The following links will help students find exemplar exercises.

NCERT Books and NCERT Syllabus here

Here are some useful links for NCERT books and the NCERT syllabus for class 10:

Frequently Asked Questions (FAQs)

Q: What are the polynomials in class 10 NCERT?
A:

A polynomial p(x) is an algebraic expression that can be written in the form of

p(x)=anxn++a2x2+a1x+a0

Here a0,a1,a2,,an are real numbers and each power of x is a non-negative integer.

Q: How to find the relationship between zeros and coefficients of a quadratic polynomial?
A:

Relationship between zeros and coefficients of a quadratic polynomial

For the quadratic polynomial ax2+bx+c=0 with zeros x1 and x2,

Sum of zeros, x1+x2=b/a

Product of zeros x1x2=c/a

Q: What is the difference between linear, quadratic and cubic polynomial?
A:

The difference between linear, quadratic and cubic polynomials is the degree of the polynomial. The degree of the linear polynomial is one, the degree of the quadratic polynomial is two, and the degree of the cubic polynomial is three.

Q: How many types of polynomials are there?
A:

Based on the number of terms, polynomials are of 4 types, monomial, binomial, trinomial and multinomial. 

Based on the degree, polynomials are of 4 types, namely, linear, quadratic, cubic and higher-degree polynomials.

Q: How to find the number of zeroes of a polynomial graphically?
A:

For a polynomial p(x) of degree n, the graph of y = p(x) intersects the x-axis at most n points. Therefore, a polynomial p(x) of degree n has at most n zeroes.

The number of zeros of a polynomial can be found by the number of points of the graph of the polynomial intersecting with the x-axis. 

Q: What is the degree of a polynomial?
A:

The highest power of the variable that occurs in the polynomial is called the degree of a polynomial.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 31 Aug'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 31 Aug'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 10th

On Question asked by student community

Have a question related to CBSE Class 10th ?

Hello, according to CBSE and most Indian education boards, the typical age for appearing in the Class 10 exam is around 15-16 years. However, there are some exceptional cases where academically advanced students complete their studies early. If you have officially cleared Class 10 from CBSE, received a valid marksheet, and your school and board have accepted your age proof during registration, your certificate is considered valid. Problems only arise if your admission to Class 10 violated the board’s eligibility rules (for example, skipping multiple classes without approval). In such rare cases, the board might question the validity. But if CBSE has issued you the certificate after proper procedures, it is legally recognized for further studies, competitive exams, and jobs. If you are worried about age restrictions for certain exams (like 17 years minimum for NEET), you might need to wait until you meet the required age.

Thank you, and best of luck for your studies.



Hello,

Yes, you are right. To get eligible for the 10th board examination, you need a minimum of 75% attendance. This is a rule that applies to the CBSE, or Central Board of Secondary Education, recognized schools. There are exceptions to this rule in the scenario, like

  • Medical Emergencies
  • Personal Tragedies
  • Official Sports Participation

I hope it will clear your query!!

hello,

These are the documents to take admission in 11th standard at your college from cbse to Maharashtra State Board.

  • Class X Marksheet
  • School Leaving Certificate
  • Date of Birth Certificate
  • Passport-Sized Photograph
  • Migrant Certificate
  • Aadhar Card or Government ID

I hope it resolves your query!!

To transfer from a CBSE school to a Maharashtra state board junior college for 11th standard, you'll need to provide several documents.

These typically include: your Class 10th mark sheet (original and attested copies), School Leaving Certificate/Transfer Certificate (TC) from your previous school, and a migration certificate if you're changing from a different board.

You'll also need a birth certificate, passport-sized photographs, and potentially an eligibility certificate from the Maharashtra State Board

The specific documents required may vary depending on the college and region. Verify the exact requirements with the college's admission office or official website.

Hello Aditya,

The documents required to take admission in 11th standard from CBSE to Maharashtra State Board are:

  1. 10th Marksheet (CBSE Board)

  2. School Leaving Certificate (from previous school)

  3. Migration Certificate (CBSE Board)

  4. Aadhaar Card (student’s ID proof)

  5. Passport size photographs

  6. Caste Certificate (if applicable)

  7. Domicile Certificate (if required by the college)

Some colleges may ask for additional documents. It’s best to check with the specific college for exact requirements.

Hope it helps !