As a trigonometric function transforms angles into values, an inverse trigonometric function can rewind the process and bring back the angles from the values. Many of the students, when trying to apply inverse trigonometric functions in any maths problem, feel confused and puzzled as they don’t have a clear understanding of the properties of the inverse trigonometric functions. Well, exercise 2.2 from the inverse trigonometric functions chapter can help the students in this regard. This part of the chapter contains the important properties and formulas of inverse trigonometric functions. This article on NCERT solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions, offers clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question:1 Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$
Answer:
Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$ .
Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$
Take R.H.S value
$\sin^{-1}(3x - 4x^3)$
= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$
= $\sin^{-1}(\sin 3\theta)$
= $3\theta$
= $3\sin^{-1}x$ = L.H.S
Question:2 Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$
Answer:
Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .
Take $\cos^{-1}x = \theta$ or $\cos \theta = x$ ;
Then we have;
R.H.S.
$\cos^{-1}(4x^3 - 3x)$
= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$
= $\cos^{-1}(\cos3\theta)$
= $3\theta$
= $3\cos^{-1}x$ = L.H.S
Hence Proved.
Question:3 Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$
Answer:
We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$
Take
$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$
$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$
$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$
$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$
$=\frac{1}{2}\tan^{-1}x$ is the simplified form.
Question:4 Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
Answer:
Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$
Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,
Then we have,
$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$
$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$
$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$
Hence the simplest form is $\frac{x}{2}$
Question: 5 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$
Answer:
Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$
So,
$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$
Taking $\cos x$ common from numerator and denominator.
We get:
$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$
$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$
= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$
= $\frac{\pi}{4} - x$ is the simplest form.
Question:6 Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Answer:
Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Take $x = a\sin \theta$ or
$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;
$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$
$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$
$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$
$=\tan^{-1}\left ( \tan \theta \right )$
$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.
Question:7 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$
Answer:
Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$
Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$
So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$
$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;
$= \tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right) = \tan^{-1}\left(\frac{3a^3\tan \theta - a^3\tan^3 \theta}{a^3 - 3a^3\tan^2 \theta} \right)$
and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;
$=3 \theta$
$=3 \tan^{-1}(\frac{x}{a})$
hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$ .
Question:8 Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
Answer:
Given equation:
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$
Then we have,
$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$
Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$
$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .
Question:9 Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$
Answer:
Taking the value $x = \tan \Theta$ or $\tan^{-1}x = \Theta$ and $y = \tan \Theta$ or $\tan^{-1} y = \Theta$ then we have,
= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,
= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$
$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$
$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$
Then,
$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$
$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$
$=\frac{x+y}{1-xy}$ Ans.
Question:10 Find the values of each of the expressions in Exercises 16 to 18. $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$
Answer:
Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;
We know that $\sin^{-1}(\sin x) = x$
If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .
Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$
We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:
= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$
= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$
$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$
Question:11 Find the values of each of the expressions in Exercises 16 to 18. $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$
Answer:
As we know $\tan^{-1}\left ( \tan x \right ) =x$
If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .
So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;
$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :
$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$
Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$
Question:12 Find the values of each of the expressions in Exercises 16 to 18. $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
Answer:
Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
we can take $\sin^{-1}\frac{3}{5} = x$ ,
then $\sin x = \frac{3}{5}$
or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$
$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$
$\Rightarrow \tan^{-1}\frac{3}{4}= x$
We have similarly;
$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$
Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$
$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from As, $\left[ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \left( \frac{x+y}{1 - xy} \right) \right]$
$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$
Question:13 $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to
(A) $\frac{7\pi}{6}$
(B) $\frac{5\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$
Answer:
As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .
In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,
$\frac{7\pi}{6} \notin [0,\pi]$
hence we have then,
$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$
$\left [ \because \cos (2\pi + x) = \cos x \right ]$
Therefore we have $\cos^{-1}\left( \cos \frac{7\pi}{6} \right) = \cos^{-1}\left( \cos \frac{5\pi}{6} \right) = \frac{5\pi}{6}$
Hence the correct answer is $\frac{5\pi}{6}$ (B).
Question:14 $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $1$
Answer:
Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;
$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or
Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,
$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$
Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .
Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$
Hence the correct answer is D.
Question:15 $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to
(A) $\pi$
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2\sqrt3$
Answer:
We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;
finding the value of $\cot^{-1}(-\sqrt3)$ :
Assume $\cot^{-1}(-\sqrt3) =y$ then,
$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .
Hence, principal value is $\frac{5\pi}{6}$
Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$
and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$
so, we have now,
$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$
$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$
or, $= \frac{ -\pi}{2}$
Hence the answer is option (B).
Also Read,
The main topic covered in NCERT Class 12 Chapter 2, Inverse Trigonometric Functions: Exercise 2.2 is:
Properties of Inverse Trigonometric Functions: Some basic properties of trigonometric functions are given as:
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Yes, just like integration, it is quite useful in Physics as well as Chemistry. These concepts are discussed in ex 2.2 class 12 comprehensively. To find the value of angles its quite useful. NCERT syllabus can be followed for the preparation of CBSE board exam.
Inverse trigonometric functions
It is used to find angles from a given angle’s trigonometric ratios.
Make short notes and revise them multiple times. Practice questions so the brain retains it. For more questions use NCERT exemplar.
No, It is not mandatory but solving questions becomes easy if values are by heart.
Take step by step method to reach what is asked starting from the given conditions.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters