CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Suppose your friend told you that the following $ 2 \times 2$ matrix is given:$\left[\begin{array}{ll} 2 & 3 \\ 4 & 5\end{array}\right] $ and asked you to find its determinant. How would you approach this problem? This is where the concept of determinants comes in. Determinants provide a systematic way to find a scalar value from a square matrix, which is crucial in solving systems of equations, finding the area, and understanding matrix properties. The first exercise of this chapter of the NCERT book is based on the basics of determinants and calculating determinants of different orders of square matrices. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.1 introduces us to the basic idea of determinants and how to evaluate them. This article on the NCERT Solutions for Exercise 4.1 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Evaluate the following determinant- $\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix}$
Answer:
The determinant is evaluated as follows
$\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$
Question:2(i) Evaluate the following determinant- $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta &\cos \theta \end{vmatrix}$
Answer:
The given two by two determinant is calculated as follows
$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta (\cos \theta) - (-\sin \theta)\sin \theta = \cos^2 \theta + \sin^2 \theta = 1$
Question:2(ii) Evaluate the following determinant- $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$
Answer:
We have determinant $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$
$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$
$= (x+1)(x^2-x+1-x+1) = (x+1)(x^2-2x+2)$
$=x^3-2x^2+2x +x^2-2x+2$
$= x^3-x^2+2$
Question:3 If $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ , then show that $| 2 A |=4|A|$
Answer:
Given determinant $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then we have to show that $| 2 A |=4|A|$,
So, $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then, $2A =2 \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix} = \begin{bmatrix} 2 & 4\\ 8 &4 \end{bmatrix}$
Hence we have $\left | 2A \right | = \begin{vmatrix} 2 &4 \\ 8& 4 \end{vmatrix} = 2(4) - 4(8) = -24$
So, L.H.S. = |2A| = -24
then calculating R.H.S. $4\left | A \right |$
We have,
$\left | A \right | = \begin{vmatrix} 1 &2 \\ 4& 2 \end{vmatrix} = 1(2) - 2(4) = -6$
hence R.H.S becomes $4\left | A \right | = 4\times(-6) = -24$
Therefore L.H.S. =R.H.S.
Hence proved.
Question:4 If $A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$ then show that $|3A|=27|A|$
Answer:
Given Matrix$A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$
Calculating $3A =3\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix} = \begin{bmatrix} 3 &0 &3 \\ 0& 3& 6\\ 0& 0 &12 \end{bmatrix}$
So, $\left | 3A \right | = 3(3(12) - 6(0) ) - 0(0(12)-0(6)) + 3(0-0) = 3(36) = 108$
calculating $27|A|$,
$|A| = \begin{vmatrix} 1 & 0 &1 \\ 0 & 1 & 2\\ 0& 0 &4 \end{vmatrix} = 1\begin{vmatrix} 1 &2 \\ 0 & 4 \end{vmatrix} - 0\begin{vmatrix} 0 &2 \\ 0& 4 \end{vmatrix} + 1\begin{vmatrix} 0 &1 \\ 0& 0 \end{vmatrix} = 4 -0 + 0 = 4$
So, $27|A| = 27(4) = 108$
Therefore $|3A|=27|A|$.
Hence proved.
Question:5(i) Evaluate the determinants.
$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$
Answer:
Given the determinant $\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$;
now, calculating its determinant value,
$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix} = 3\begin{vmatrix} 0 &-1 \\ -5& 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} +(-2)\begin{vmatrix} 0 &0 \\ 3& -5 \end{vmatrix}$
$= 3(0-5)+1(0+3) -2(0-0) = -15+3-0 = -12$.
Question:5(ii) Evaluate the determinants.
$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$
Answer:
Given determinant $\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$;
Now calculating the determinant value;
$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix} = 3\begin{vmatrix} 1 &-2 \\ 3&1 \end{vmatrix} -(-4)\begin{vmatrix} 1 &-2 \\ 2& 1 \end{vmatrix}+5\begin{vmatrix} 1 & 1\\ 2& 3 \end{vmatrix}$
$= 3(1+6) +4(1+4) +5(3-2) = 21+20+5 = 46$.
Question:5(iii) Evaluate the determinants.
$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$
Answer:
Given determinant $\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$;
Now calculating the determinant value;
$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix} = 0\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} -1\begin{vmatrix} -1 &-3 \\ -2& 0 \end{vmatrix}+2\begin{vmatrix} -1 &0 \\ -2& 3 \end{vmatrix}$
$= 0 - 1(0-6)+2(-3-0) = 6 -6 =0$
Question:5(iv) Evaluate the determinants.
$\begin{vmatrix}2 &-1 &2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$
Answer:
Given determinant: $\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$,
We now calculate determinant value:
$\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix} =2\begin{vmatrix} 2 &-1 \\ -5 & 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3 & 0 \end{vmatrix}+(-2)\begin{vmatrix} 0 &2 \\ 3&-5 \end{vmatrix}$
$=2(0-5)+1(0+3)-2(0-6) = -10+3+12 = 5$
Question:6 If $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ , then find $|A|$.
Answer:
Given the matrix $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ then,
Finding the determinant value of A;
$|A| = 1\begin{vmatrix} 1 &-3 \\ 4& -9 \end{vmatrix} -1\begin{vmatrix} 2 &-3 \\ 5& -9 \end{vmatrix}-2\begin{vmatrix} 2 &1 \\ 5& 4 \end{vmatrix}$
$= 1(-9+12)-1(-18+15)-2(8-5) =3+3-6 =0$
Question:7(i) Find values of x, if
$\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$
Answer:
Given that $\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$
First, we solve the determinant value of L.H.S. and equate it to the determinant value of R.H.S.,
$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = 2(1) - 4(5) = 2 - 20 = -18$ and $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = 2x(x) - 4(6) = 2x^2 - 24$
So, we have then,
$-18= 2x^2-24$ or $3= x^2$ or $x= \pm \sqrt{3}$
Question:7(ii) Find values of x, if
$\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$
Answer:
Given $\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$;
So, we here equate both sides after calculating each side's determinant values.
L.H.S. determinant value;
$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2(5) - 3(4) = 10 - 12 = -2$
Similarly R.H.S. determinant value;
$\begin{vmatrix}x &3 \\2x &5 \end{vmatrix} = 5(x) - 3(2x) = 5x - 6x =-x$
So, we have then;
$-2 = -x$ or $x =2$.
(A) $6$ (B) $\pm 6$ (C) $-6$ (D) $0$
Answer:
Solving the L.H.S. determinant ;
$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = x(x) - 2(18) = x^2 - 36$
and solving R.H.S determinant;
$\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix} = 36-36 = 0$
So equating both sides;
$x^2 - 36 =0$ or $x^2 = 36$ or $x = \pm 6$
Hence answer is (B).
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.1.
1. Definition:
We know that multiplication and addition are basic operations in matrices. In determinants, we evaluate a scalar value from a square matrix using specific rules. For example, for a $2 \times 2$ matrix
$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right], \quad \text { the determinant is given by } a d-b c $
2. Determinant of a $\mathbf{2 \times 2}$ Matrix: Let the matrix $A$ be defined as:
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
To evaluate the determinant of a $2 \times 2$ matrix, use the formula:
$ \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} $
3. Determinant of a $\mathbf{3 \times 3}$ Matrix:
For $3 \times 3$ matrices, the determinant is calculated using expansion by minors.
$ \left|\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right|=a(e i-f h)-b(d i-f g)+c(d h-e g) $
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
The determinant is a scalar value of a square matrix which characterize some properties of the matrix.
|2A| = 2^2 = 4 | A |
There are 6 exercises and one miscellaneous exercise given in the NCERT textbook Class 12 Maths chapter 4.
No, CBSE doesn't provide NCERT solutions, you can get NCERT solutions for chapter 4 Class 12 Maths.
The determinant of a singular matrix is always zero.
A matrix that is not singular is called a non-singular matrix. The determinant of a non-singular matrix is non-zero.
Here you will get Syllabus for CBSE Class 12 Maths
There are 13 chapters in the NCERT Class 12 Maths book.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters