CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
NCERT Solutions for Exercise 4.2 Class 12 Maths Chapter 4 Determinants are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In this article, you will get NCERT solutions for Class 12 Maths chapter 4 exercise 4.2. These Exercise 4.2 Class 12 Maths solutions are consist of questions related to properties of determinants. Properties of determinants make it easy for us to finding determinants without complicated calculations. There are 6 properties of determinants related to operation on the determinants given in the NCERT textbook before the Class 12 Maths ch 4 ex 4.2. You are advised to go through the proof of these properties given in the textbook to get a better understanding. There are some examples given after each property which will also help you to get conceptual clarity.
12th class Maths exercise 4.2 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also, see
Question:1 Using the property of determinants and without expanding, prove that
$\begin{vmatrix}x &a &x+a \\y &b &y+b \\z &c &z+c \end{vmatrix}=0$
Answer:
We can split it in manner like;
$\begin{vmatrix}x &a &x+a \\y &b &y+b \\z &c &z+c \end{vmatrix}= \begin{vmatrix} x &a &x \\ y & b &y \\ z &c &z \end{vmatrix} + \begin{vmatrix} x &a & a\\ y &b &b \\ z&c & c \end{vmatrix}$
So, we know the identity that If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then the value of the determinant is zero.
Clearly, expanded determinants have identical columns.
$\therefore 0 + 0 = 0$
Hence the sum is zero.
Question:2 Using the property of determinants and without expanding, prove that
$\begin{vmatrix}a-b &b-c &c-a \\b-c &c-a &a-b \\c-a &a-b &b-c \end{vmatrix}=0$
Answer:
Given determinant $\triangle =\begin{vmatrix}a-b &b-c &c-a \\b-c &c-a &a-b \\c-a &a-b &b-c \end{vmatrix}=0$
Applying the rows addition $R_{1} \rightarrow R_{1}+R_{2}$ then we have;
$\triangle =\begin{vmatrix}a-c &b-a &c-b \\b-c &c-a &a-b \\-(a-c) &-(b-a) &-(c-b) \end{vmatrix}=0$
$=-\begin{vmatrix}a-c &b-a &c-b \\b-c &c-a &a-b \\(a-c) &(b-a) &(c-b) \end{vmatrix}=0$
So, we have two rows $R_{1}$ and $R_{2}$ identical hence we can say that the value of determinant = 0
Therefore $\triangle = 0$.
Question:3 Using the property of determinants and without expanding, prove that
$\begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix}=0$
Answer:
Given determinant $\dpi{100} \begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix}$
So, we can split it in two addition determinants:
$\begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix} = \begin{vmatrix} 2 &7 &63+2 \\ 3& 8 &72+3 \\ 5& 9 & 81+5 \end{vmatrix}$
$\begin{vmatrix} 2 &7 &63+2 \\ 3& 8 &72+3 \\ 5& 9 & 81+5 \end{vmatrix} = \begin{vmatrix} 2 & 7 &2 \\ 3& 8& 3\\ 5 & 9 & 5 \end{vmatrix} + \begin{vmatrix} 2 & 7 &63 \\ 3& 8 &72 \\ 5 & 9 & 81 \end{vmatrix}$
$\begin{vmatrix} 2 & 7 &2 \\ 3& 8& 3\\ 5 & 9 & 5 \end{vmatrix} = 0$ [$\because$ Here two columns are identical ]
and $\begin{vmatrix} 2 & 7 &63 \\ 3& 8 &72 \\ 5 & 9 & 81 \end{vmatrix} = \begin{vmatrix} 2 & 7 &9(7) \\ 3& 8 &9(8) \\ 5 &9 & 9(9) \end{vmatrix} = 9 \begin{vmatrix} 2 & 7 &7 \\ 3& 8& 8\\ 5& 9&9 \end{vmatrix}$ [$\because$ Here two columns are identical ]
$= 0$
Therefore we have the value of determinant = 0.
Question:4 Using the property of determinants and without expanding, prove that
$\begin{vmatrix}1 &bc &a(b+c) \\1 &ca &b(c+a) \\1 &ab & c(a+b) \end{vmatrix}=0$
Answer:
We have determinant:
$\triangle = \begin{vmatrix} 1 &bc &a(b+c) \\ 1& ca &b(c+a) \\ 1& ab &c(a+b) \end{vmatrix}$
Applying $C_{3} \rightarrow C_{2} + C_{3}$ we have then;
$\triangle = \begin{vmatrix} 1 &bc & ab+bc+ca \\ 1& ca &ab+bc+ca \\ 1& ab &ab+bc+ca \end{vmatrix}$
So, here column 3 and column 1 are proportional.
Therefore, $\triangle = 0$.
Question:5 Using the property of determinants and without expanding, prove that
Answer:
Given determinant :
$\triangle= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a+b &p+q & x+y \end{vmatrix}$
Splitting the third row; we get,
$= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a &p & x \end{vmatrix} + \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ b &q & y \end{vmatrix} = \triangle_{1} + \triangle_{2}\ (assume\ that)$.
Then we have,
$\triangle_{1} = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a &p & x \end{vmatrix}$
On Applying row transformation $R_{2} \rightarrow R_{2} - R_{3}$ and then $R_{1} \rightarrow R_{1} - R_{2}$;
we get, $\triangle_{1} = \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}$
Applying Rows exchange transformation $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3}$, we have:
$\triangle_{1} =(-1)^2 \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}= \begin{vmatrix} a & p & x\\ b & q&y \\ c& r & z \end{vmatrix}$
also $\triangle_{2} = \begin{vmatrix} b+c & q+r & y+z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$
On applying rows transformation, $R_{1} \rightarrow R_{1} - R_{3}$ and then $R_{2} \rightarrow R_{2} - R_{1}$
$\triangle_{2} = \begin{vmatrix} c & r & z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$ and then $\triangle_{2} = \begin{vmatrix} c & r & z \\ a&p &x \\ b & q & y \end{vmatrix}$
Then applying rows exchange transformation;
$R_{1} \leftrightarrow R_{2}$ and then $R_{2} \leftrightarrow R_{3}$. we have then;
$\triangle_{2} =(-1)^2 \begin{vmatrix} a & p & x \\ b&q &y \\ c & r & z \end{vmatrix}$
So, we now calculate the sum = $\triangle_{1} + \triangle _{2}$
$\triangle_{1} + \triangle _{2} = 2 \begin{vmatrix} a &p &x \\ b& q& y\\ c & r& z \end{vmatrix}$
Hence proved.
Question:6 Using the property of determinants and without expanding, prove that
$\begin{vmatrix} 0 &a &-b \\-a &0 & -c\\b &c &0 \end{vmatrix}=0$
Answer:
We have given determinant
$\triangle = \begin{vmatrix} 0 &a &-b \\-a &0 & -c\\b &c &0 \end{vmatrix}$
Applying transformation, $\dpi{100} R_{1} \rightarrow cR_{1}$ we have then,
$\triangle = \frac{1}{c}\begin{vmatrix} 0 &ac &-bc \\-a &0 & -c\\b &c &0 \end{vmatrix}$
We can make the first row identical to the third row so,
Taking another row transformation: $R_{1} \rightarrow R_{1}-bR_{2}$ we have,
$\triangle = \frac{1}{c}\begin{vmatrix} ab &ac &0 \\-a &0 & -c\\b &c &0 \end{vmatrix} = \frac{a}{c} \begin{vmatrix} b &c &0 \\-a &0 & -c\\b &c &0 \end{vmatrix}$
So, determinant has two rows $R_{1}\ and\ R_{3}$ identical.
Hence $\triangle = 0$.
Question:7 Using the property of determinants and without expanding, prove that
$\begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}=4a^2b^2c^2$
Answer:
Given determinant : $\dpi{100} \begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}$
$\triangle = \begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}$
As we can easily take out the common factors a,b,c from rows $R_{1},R_{2},R_{3}$ respectively.
So, get then:
$=abc \begin{vmatrix} -a &b &c \\ a &-b &c \\ a & b & -c \end{vmatrix}$
Now, taking common factors a,b,c from the columns $C_{1},C_{2},C_{3}$ respectively.
$=a^2b^2c^2 \begin{vmatrix} -1 &1 &1 \\ 1 &-1 &1 \\ 1 & 1 & -1 \end{vmatrix}$
Now, applying rows transformations $R_{1} \rightarrow R_{1} + R_{2}$ and then $R_{3} \rightarrow R_{2} + R_{3}$ we have;
$\triangle = a^2b^2c^2\begin{vmatrix} 0 &0 &2 \\ 1&-1 &1 \\ 2& 0 &0 \end{vmatrix}$
Expanding to get R.H.S.
$\triangle = a^2b^2c^2 \left ( 2\begin{vmatrix} 1 &-1 \\ 2& 0 \end{vmatrix} \right ) = 2a^2b^2c^2(0+2) =4a^2b^2c^2$
Question:8(i) By using properties of determinants, show that:
$\begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}=(a-b)(b-c)(c-a)$
Answer:
We have the determinant $\dpi{100} \begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}$
Applying the row transformations $R_{1} \rightarrow R_{1} -R_{2}$ and then $R_{2} \rightarrow R_{2} -R_{3}$ we have:
$\triangle = \begin{vmatrix} 0 &a-b &a^2-b^2 \\ 0 &b-c &b^2-c^2 \\ 1 &c &c^2 \end{vmatrix}$
$= \begin{vmatrix} 0 &a-b &(a-b)(a+b) \\ 0 &b-c &(b-c)(b+c) \\ 1 &c &c^2 \end{vmatrix} = (a-b)(b-c)\begin{vmatrix} 0 &1 &(a+b) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}$
Now, applying $R_{1} \rightarrow R_{1} -R_{2}$ we have:
$= (a-b)(b-c)\begin{vmatrix} 0 &0 &(a-c) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}$ or $= (a-b)(b-c)(a-c)\begin{vmatrix} 0 &0 &1 \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix} =(a-b)(b-c)(a-c)\begin{vmatrix} 0 &1 \\ 1 & c \end{vmatrix}$
$= (a-b)(b-c)(c-a)$
Hence proved.
Question:8(ii) By using properties of determinants, show that:
Answer:
Given determinant :
$\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^3 &b^3 &c^3 \end{vmatrix}$,
Applying column transformation $C_{1} \rightarrow C_{1}-C_{3}$ and then $C_{2} \rightarrow C_{2}-C_{3}$
We get,
$\triangle =\begin{vmatrix} 0 & 0 & 1\\ a-c& b-c & c \\ a^3-c^3 &b^3-c^3 & c^3 \end{vmatrix}$
$=\begin{vmatrix} 0 & 0 & 1\\ a-c& b-c & c \\ (a-c)(a^2+ac+c^2) &(b-c)(b^2+bc+c^2) & c^3 \end{vmatrix}$
$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 1& 1 & c \\ (a^2+ac+c^2) &(b^2+bc+c^2) & c^3 \end{vmatrix}$
Now, applying column transformation $C_{1} \rightarrow C_{1} - C_{2}$, we have:
$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 0& 1 & c \\ (a^2-b^2+ac-bc) &(b^2+bc+c^2) & c^3 \end{vmatrix}$
$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 0& 1 & c \\ (a-b)(a+b+c) &(b^2+bc+c^2) & c^3 \end{vmatrix}$
$=(a-c)(b-c)(a-b)(a+b+c)\begin{vmatrix} 0&1 \\ 1& c \end{vmatrix}$
$=-(a-c)(b-c)(a-b)(a+b+c) = (a-b)(b-c)(c-a)(a+b+c)$
Hence proved.
Question:9 By using properties of determinants, show that:
$\begin{vmatrix} x & x^2 & yz\\ y & y^2 &zx \\ z & z^2 & xy \end{vmatrix}=(x-y)(y-z)(z-x)(xy+yz+zx)$
Answer:
We have the determinant:
$\triangle = \begin{vmatrix} x & x^2 & yz\\ y & y^2 &zx \\ z & z^2 & xy \end{vmatrix}$
Applying the row transformations $R_{1} \rightarrow R_{1}- R_{3}$ and then $R_{2} \rightarrow R_{2}- R_{3}$, we have;
$\triangle = \begin{vmatrix} x-z & x^2-z^2 & yz-xy\\ y-z & y^2-z^2 &zx-xy \\ z & z^2 & xy \end{vmatrix}$
$= \begin{vmatrix} x-z & (x-z)(x+z) & y(z-x)\\ y-z & (y-z)(y+z) &x(z-y) \\ z & z^2 & xy \end{vmatrix}$
$= (x-z)(y-z)\begin{vmatrix} 1 & (x+z) & -y\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$
Now, applying $R_{1} \rightarrow R_{1} - R_{2}$; we have
$= (x-z)(y-z)\begin{vmatrix} 0 & (x-y) & (x-y)\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$
$= (x-z)(y-z)(x-y)\begin{vmatrix} 0 & 1 & 1\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$
Now, expanding the remaining determinant;
$= (x-z)(y-z)(x-y) \left [ (xy+zx) + (z^2 - zy-z^2) \right]$
$= -(x-z)(y-z)(x-y) \left [ xy+zx + zy \right]$
$= (x-y)(y-z)(z-x) \left [ xy+zx + zy \right]$
Hence proved.
Question:10(i) By using properties of determinants, show that:
$\begin{vmatrix} x+4 &2x &2x \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}=(5x+4)(4-x)$
Answer:
Given determinant:
$\begin{vmatrix} x+4 &2x &2x \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$
Applying row transformation: $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$ then we have;
$\triangle = \begin{vmatrix} 5x+4 &5x+4 &5x+4 \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$
Taking a common factor: 5x+4
$= (5x+4)\begin{vmatrix} 1 &1 &1 \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$
Now, applying column transformations $C_{1} \rightarrow C_{1}- C_{2}$ and $C_{2} \rightarrow C_{2}- C_{3}$
$= (5x+4)\begin{vmatrix} 0 &0 &1 \\ x-4 & 4-x & 2x\\ 0 & x-4 & x+4 \end{vmatrix}$
$= (5x+4)(4-x)(4-x)\begin{vmatrix} 0 &0 &1 \\ 1 & 1 & 2x\\ 0 & 1 & x+4 \end{vmatrix}$
$= (5x+4)(4-x)^2$
Question:10(ii) By using properties of determinants, show that:
$\begin{vmatrix} y+k & y & y\\ y & y+k &y \\ y & y & y+k \end{vmatrix}=k^2(3y+k)$
Answer:
Given determinant:
$\triangle = \begin{vmatrix} y+k & y & y\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$
Applying row transformation $R_{1} \rightarrow R_{1} +R_{2}+R_{3}$ we get;
$= \begin{vmatrix} 3y+k & 3y+k & 3y+k\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$
$=(3y+k) \begin{vmatrix}1 & 1 & 1\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$ [taking common (3y + k) factor]
Now, applying column transformation $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{3}$
$=(3y+k) \begin{vmatrix}0 & 0 & 1\\ -k & k &y \\ 0 & -k & y+k \end{vmatrix}$
$=(3y+k)(k^2) \begin{vmatrix}0 & 0 & 1\\ -1 & 1 &y \\ 0 & -1 & y+k \end{vmatrix}$
$=k^2 (3y+k)$
Hence proved.
Question:11(i) By using properties of determinants, show that:
$\begin{vmatrix} a-b-c &2a &2a \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}=(a+b+c)^3$
Answer:
Given determinant:
$\triangle = \begin{vmatrix} a-b-c &2a &2a \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$
We apply row transformation: $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ we have;
$= \begin{vmatrix} a+b+c &a+b+c &a+b+c \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$
Taking common factor (a+b+c) out.
$=(a+b+c) \begin{vmatrix} 1 &1 &1 \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$
Now, applying column tranformation $C_{1} \rightarrow C_{1}- C_{2}$ and then $C_{2} \rightarrow C_{2}- C_{3}$
We have;
$=(a+b+c) \begin{vmatrix} 0 &0 &1 \\ b+c+a &-b-c-a &2b \\ 0 &c+a+b &c-a-b \end{vmatrix}$
$=(a+b+c)(a+b+c)(a+b+c) \begin{vmatrix} 0 &0 &1 \\ 1 &-1 &2b \\ 0 &1 &c-a-b \end{vmatrix}$
$=(a+b+c)(a+b+c)(a+b+c) = (a+b+c)^3$
Hence Proved.
Question:11(ii) By using properties of determinants, show that:
$\begin{vmatrix} x+y+2z &x &y \\ z & y+z+2x & y\\ z & x &z+x+2y \end{vmatrix}=2(x+y+z)^3$
Answer:
Given determinant
$\triangle =\begin{vmatrix} x+y+2z &x &y \\ z & y+z+2x & y\\ z & x &z+x+2y \end{vmatrix}$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ we get;
$=\begin{vmatrix} 2(x+y+z) &x &y \\ 2(z+y+x) & y+z+2x & y\\ 2(z+y+x) & x &z+x+2y \end{vmatrix}$
Taking 2(x+y+z) factor out, we get;
$=2(x+y+z)\begin{vmatrix} 1 &x &y \\ 1 & y+z+2x & y\\ 1 & x &z+x+2y \end{vmatrix}$
Now, applying row transformations, $R_{1} \rightarrow R_{1} -R_{2}$ and then $R_{2} \rightarrow R_{2} -R_{3}$.
we get;
$=2(x+y+z)\begin{vmatrix} 0 &-x-y-z &0 \\ 0 & y+z+x & -y-z-x\\ 1 & x &z+x+2y \end{vmatrix}$
$=2(x+y+z)^3\begin{vmatrix} 0 &-1 &0 \\ 0 & 1 & -1\\ 1 & x &z+x+2y \end{vmatrix}$
$=2(x+y+z)^3\begin{vmatrix} -1 &0 \\ 1& -1 \end{vmatrix} = 2(x+y+z)^3$
Hence proved.
Question:12 By using properties of determinants, show that:
$\begin{vmatrix} 1 &x &x^2 \\ x^2 &1 &x \\ x &x^2 &1 \end{vmatrix}=(1-x^3)^2$
Answer:
Give determinant $\begin{vmatrix} 1 &x &x^2 \\ x^2 &1 &x \\ x &x^2 &1 \end{vmatrix}$
Applying column transformation $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ we get;
$\triangle = \begin{vmatrix} 1+x+x^2 &x &x^2 \\ x^2+1+x &1 &x \\ x+x^2+1 &x^2 &1 \end{vmatrix}$
$= (1+x+x^2)\begin{vmatrix} 1 &x &x^2 \\ 1 &1 &x \\ 1 &x^2 &1 \end{vmatrix}$ [after taking the (1+x+x2 ) factor common out.]
Now, applying row transformations, $R_{1} \rightarrow R_{1}-R_{2}$ and then $R_{2} \rightarrow R_{2}-R_{3}$.
we have now,
$= (1+x+x^2)\begin{vmatrix} 0 &x-1 &x^2-x \\ 0 &1-x^2 &x-1 \\ 1 &x^2 &1 \end{vmatrix}$
$= (1+x+x^2)\begin{vmatrix} x-1 &x^2-x \\ 1-x^2 &x-1 \end{vmatrix}$
$= (1+x+x^2)((x-1)^2-x(x-1)(1-x^2))$
$= (1+x+x^2)(x-1)(x^3-1) = (x^3-1)^2$
As we know $\left [\because (1+x+x^2)(x-1) = (x^3-1) \right ]$
Hence proved.
Question:13 By using properties of determinants, show that:
Answer:
We have determinant:
$\triangle = \begin{vmatrix} 1+a^2-b^2 &2ab &-2b \\ 2ab &1-a^2+b^2 &2a \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$
Applying row transformations, $R_{1} \rightarrow R_{1} +bR_{3}$ and $R_{2} \rightarrow R_{2} -aR_{3}$ then we have;
$= \begin{vmatrix} 1+a^2+b^2 &0 &-b(1+a^2+b^2) \\ 0 &1+a^2+b^2 &a(1+a^2+b^2) \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$
taking common factor out of the determinant;
$= (1+a^2+b^2)^2\begin{vmatrix} 1 &0 &-b \\ 0 &1 &a \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$
Now expanding the remaining determinant we get;
$= (1+a^2+b^2)^2\left [ (1)\begin{vmatrix} 1& a\\ -2a&1-a^2-b^2 \end{vmatrix} - b\begin{vmatrix} 0&1 \\ 2b&-2a \end{vmatrix}\right ]$
$= (1+a^2+b^2)^2\left [ 1-a^2-b^2+2a^2-b(-2b)\right ]$
$= (1+a^2+b^2)^2\left [ 1+a^2+b^2\right ] = (1+a^2+b^2)^3$
Hence proved.
Question:14 By using properties of determinants, show that:
$\begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}=1+a^2+b^2+c^2$
Answer:
Given determinant:
$\dpi{100} \begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}$
Let $\triangle = \begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}$
Then we can clearly see that each column can be reduced by taking common factors like a,b, and c respectively from C1,C2,and C3.
We then get;
$=abc \begin{vmatrix} \left ( a+\frac{1}{a} \right ) &a &a \\ b &(b+\frac{1}{b}) &b \\ c & c &(c+\frac{1}{c}) \end{vmatrix}$
Now, applying column transformations: $C_{1} \rightarrow C_{1} -C_{2}$ and $C_{2} \rightarrow C_{2} -C_{3}$
then we have;
$=abc \begin{vmatrix} \left ( \frac{1}{a} \right ) &0 &a \\ -\frac{1}{b} &(\frac{1}{b}) &b \\ 0 & -\frac{1}{c} &(c+\frac{1}{c}) \end{vmatrix}$
$=abc\times \frac{1}{abc} \begin{vmatrix} 1 &0 &a^2 \\ -1 &1 &b^2 \\ 0 & -1 &(c^2+1) \end{vmatrix}$
$= \begin{vmatrix} 1 &0 &a^2 \\ -1 &1 &b^2 \\ 0 & -1 &(c^2+1) \end{vmatrix}$
Now, expanding the remaining determinant:
$\triangle = 1\begin{vmatrix} 1&b^2 \\ -1&(c^2+1) \end{vmatrix} + a^2\begin{vmatrix} -1&1 \\ 0& -1 \end{vmatrix}$
$= 1[(c^2+1)+b^2] + a^2(1)=a^2+b^2+c^2+1$.
Hence proved.
Question:15 Choose the correct answer. Let A be a square matrix of order $3\times 3$ , then $|kA|$ is equal to
(A) $k|A|$ (B) $k^2|A|$ (C) $k^3|A|$ (D) $3k|A|$
Answer:
Assume a square matrix A of order of $3\times3$.
$A = \begin{bmatrix} a_1 & b_1&c_1 \\ a_2& b_2& c_2\\ a_3& b_3 & c_3 \end{bmatrix}$
Then we have;
$kA = \begin{bmatrix} ka_1 & kb_1&kc_1 \\ ka_2& kb_2& kc_2\\ ka_3& kb_3 & kc_3 \end{bmatrix}$
(Taking the common factors k from each row.)
$|kA| = \begin{vmatrix} ka_1 & kb_1&kc_1 \\ ka_2& kb_2& kc_2\\ ka_3& kb_3 & kc_3 \end{vmatrix} = k^3 \begin{vmatrix} a_1 & b_1&c_1 \\a_2& b_2& c_2\\ a_3& b_3 & c_3 \end{vmatrix}$
$= k^3 |A|$
Therefore correct option is (C).
Question:16 Choose the correct answer.
Which of the following is correct
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these
Answer:
The answer is (C) Determinant is a number associated to a square matrix.
As we know that To every square matrix $A = [a_{ij}]$of order n, we can associate a number (real or complex) called determinant of the square matrix A, where $a_{ij} = (i, j)^{th}$ element of A.
This article NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2 is consists of questions related to properties of determinants. In Class 12th Maths chapter 4 exercise 4.2 there are 16 questions including 2 multiple choice type questions. There are 11 examples given in NCERT book before the exercise 4.2 Class 12 Maths. First, try to solve these examples given in the textbook. It will help you to get conceptual clarity and solving NCERT problems. NCERT syllabus Class 12th Maths chapter 4 exercise 4.2 questions are very important for the board exam as well as for the engineering competitive exams.
Also Read| Determinants Class 12 Chapter 4 Notes
Also see-
Subject Wise NCERT Exampler Solutions
Happy learning!!!
Frequently Asked Questions (FAQs)
The value of the determinant remains unchanged when the rows and columns of determinants are interchanged.
If any two rows of a determinant are interchanged then the sign of the determinant change.
The sign of the determinant change when any two columns of a determinant are interchanged.
The value of the determinant is zero if any two rows of a determinant are identical.
The value of the determinant is zero if any two columns of a determinant are identical.
If the order of the square matrix is 2 then |kA| = k^2|A|.
There are 16 questions including two multiple choice questions are given in this exercise. All questions are useful to get a conceptual clarity. Following NCERT syllabus is beneficial for the CBSE board exam
By clicking on the link you will get NCERT solutions. NCERT Solutions for Mathematics and Science are given chapter wise.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters