CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Suppose you are given a square matrix and asked to find its inverse. Before doing that, the first step is to calculate its adjoint. The adjoint and inverse of a matrix are two of the most important applications of determinants and are key topics in this exercise. The adjoint of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is defined as the transpose of the matrix $\left[\mathrm{A}_{i j}\right]_{n \times n}$, where $\mathrm{A}_{i j}$ is the cofactor of the element $a_{i j}$. The adjoint of the matrix A is denoted by adj A. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.4 focuses on computing the adjoint and inverse of a square matrix using minors, cofactors, and determinants. This article on the NCERT Solutions for Exercise 4.4 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Find adjoint of each of the matrices.
$\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}$
Answer:
Given matrix: $\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}= A$
Then we have,
$A_{11} = 4, A_{12}=-(1)3, A_{21} = -(1)2,\ and\ A_{22}= 1$
Hence we get:
$adjA = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} &A_{22} \end{bmatrix}^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} &A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 &1 \end{bmatrix}$
Question:2 Find adjoint of each of the matrices
$\small \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$
Answer:
Given the matrix: $\small A = \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$
Then we have,
$A_{11} = (-1)^{1+1}\begin{vmatrix} 3 &5 \\ 0& 1 \end{vmatrix} =(3-0)= 3$
$A_{12} = (-1)^{1+2}\begin{vmatrix} 2 &5 \\ -2& 1 \end{vmatrix} =-(2+10)= -12$
$A_{13} = (-1)^{1+3}\begin{vmatrix} 2 &3 \\ -2& 0 \end{vmatrix} =0+6= 6$
$A_{21} = (-1)^{2+1}\begin{vmatrix} -1 &2 \\ 0& 1 \end{vmatrix} =-(-1-0)= 1$
$A_{22} = (-1)^{2+2}\begin{vmatrix} 1 &2 \\ -2& 1 \end{vmatrix} =(1+4)= 5$
$A_{23} = (-1)^{2+3}\begin{vmatrix} 1 &-1 \\-2& 0 \end{vmatrix} =-(0-2)= 2$
$A_{31} = (-1)^{3+1}\begin{vmatrix} -1 &2 \\ 3& 5 \end{vmatrix} =(-5-6)= -11$
$A_{32} = (-1)^{3+2}\begin{vmatrix} 1 &2 \\2& 5\end{vmatrix} =-(5-4)= -1$
$A_{33} = (-1)^{3+3}\begin{vmatrix} 1 &-1 \\ 2& 3 \end{vmatrix} =(3+2)= 5$
Hence we get:
$adjA = \begin{bmatrix} A_{11} &A_{21} &A_{31} \\ A_{12}&A_{22} &A_{32} \\ A_{13}&A_{23} &A_{33} \end{bmatrix} = \begin{bmatrix} 3 &1 &-11 \\ -12&5 &-1 \\ 6&2 &5 \end{bmatrix}$
Question:3 Verify $\small A (adj A)=(adj A)A=|A|I$.
$\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$
Answer:
Given the matrix: $\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$
Let $\small A = \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$
Calculating the cofactors;
$\small A_{11} = (-1)^{1+1}(-6) = -6$
$\small A_{12} = (-1)^{1+2}(-4) = 4$
$\small A_{21} = (-1)^{2+1}(3) = -3$
$\small A_{22} = (-1)^{2+2}(2) = 2$
Hence, $\small adjA = \begin{bmatrix} -6 &-3 \\ 4& 2 \end{bmatrix}$
Now,
$\small A (adj A) = \begin{bmatrix} 2 &3 \\ -4&-6 \end{bmatrix}\left ( \begin{bmatrix} -6 &-3 \\ 4 &2 \end{bmatrix} \right )$
$\small \begin{bmatrix} -12+12 &-6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$
aslo,
$\small (adjA)A = \begin{bmatrix} -6 &-3 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 2 &3 \\ -4& -6 \end{bmatrix}$
$\small = \begin{bmatrix} -12+12 &-18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$
Now, calculating |A|;
$\small |A| = -12-(-12) = -12+12 = 0$
So, $\small |A|I = 0\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$
Hence we get
$\small A (adj A)=(adj A)A=|A|I$
Question:4 Verify $\small A (adj A)=(adjA)A=|A| I$.
$\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$
Answer:
Given matrix: $\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$
Let $\small A= \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$
Calculating the cofactors;
$\small A_{11} = (-1)^{1+1} \begin{vmatrix} 0 &-2 \\ 0& 3 \end{vmatrix} = 0$
$\small A_{12} = (-1)^{1+2} \begin{vmatrix} 3 &-2 \\1& 3 \end{vmatrix} = -(9+2) =-11$
$\small A_{13} = (-1)^{1+3} \begin{vmatrix} 3 &0 \\ 1& 0 \end{vmatrix} = 0$
$\small A_{21} = (-1)^{2+1} \begin{vmatrix} -1 &2 \\ 0& 3 \end{vmatrix} = -(-3-0)= 3$
$\small A_{22} = (-1)^{2+2} \begin{vmatrix} 1 &2 \\ 1& 3 \end{vmatrix} = 3-2=1$
$\small A_{23} = (-1)^{2+3} \begin{vmatrix} 1 &-1 \\ 1& 0 \end{vmatrix} = -(0+1) = -1$
$\small A_{31} = (-1)^{3+1} \begin{vmatrix} -1 &2 \\ 0& -2 \end{vmatrix} = 2$
$\small A_{32} = (-1)^{3+2} \begin{vmatrix} 1 &2 \\ 3& -2 \end{vmatrix} = -(-2-6) = 8$
$\small A_{33} = (-1)^{3+3} \begin{vmatrix} 1 &-1 \\ 3& 0 \end{vmatrix} = 0+3 =3$
Hence, $\small adjA = \begin{bmatrix} 0 &3 &2 \\ -11 & 1& 8\\ 0 &-1 & 3 \end{bmatrix}$
Now,
$\small A (adj A) =\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}$
$\small =\begin{bmatrix} 0+11+0 &3-1-2 &2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 &3+0-3 & 2+0+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$
also,
$\small A (adj A) =\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}$
$\small =\begin{bmatrix} 0+9+2 &0+0+0 &0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 &0+0+0 & 0+2+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$
Now, calculating |A|;
$\small |A| = 1(0-0) +1(9+2) +2(0-0) = 11$
So, $\small |A|I = 11\begin{bmatrix} 1 &0&0 \\ 0& 1&0 \\ 0&0&1 \end{bmatrix} = \begin{bmatrix} 11 &0&0 \\ 0& 11&0\\ 0&0&11 \end{bmatrix}$
Hence we get,
$\small A (adj A)=(adj A)A=|A|I$.
Question:5 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$
Answer:
Given matrix : $\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
|A| = (6+8) = 14
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (3) = 3$
$A_{12} = (-1)^{1+2} (4) = -4$
$A_{21} = (-1)^{2+1} (-2) = 2$
$A_{22} = (-1)^{2+2} (2) = 2$
So, we have $adjA = \begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{14}\begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{14} &\frac{1}{7} \\ \\ \frac{-2}{7} & \frac{1}{7} \end{bmatrix}$
Question:6 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix}$
Answer:
Given the matrix : $\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix} = A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
|A| = (-2+15) = 13
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (2) = 2$
$A_{12} = (-1)^{1+2} (-3) = 3$
$A_{21} = (-1)^{2+1} (5) =-5$
$A_{22} = (-1)^{2+2} (-1) = -1$
So, we have $adjA = \begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{13}\begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{13} &\frac{-5}{13} \\ \\ \frac{3}{13} & \frac{-1}{13} \end{bmatrix}$
Question:7 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}$
Answer:
Given the matrix : $\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}= A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
$|A| = 1(10-0)-2(0-0)+3(0-0) = 10$
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (10) = 10$ $A_{12} = (-1)^{1+2} (0) = 0$
$A_{13} = (-1)^{1+3} (0) =0$ $A_{21} = (-1)^{2+1} (10) = -10$
$A_{22} = (-1)^{2+2} (5-0) = 5$ $A_{23} = (-1)^{2+1} (0-0) = 0$
$A_{31} = (-1)^{3+1} (8-6) = 2$ $A_{32} = (-1)^{3+2} (4-0) =-4$
$A_{33} = (-1)^{3+3} (2-0) = 2$
So, we have $adjA = \begin{bmatrix} 10 &-10 &2 \\ 0& 5 &-4 \\ 0& 0 &2 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{10}\begin{bmatrix} 10 &-10 &2 \\ 0 & 5& -4\\ 0 &0 &2 \end{bmatrix}$
Question:8 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix}$
Answer:
Given the matrix : $\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix} = A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
$|A| = 1(-3-0)-0(-3-0)+0(6-15) = -3$
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (-3-0) = -3$ $A_{12} = (-1)^{1+2} (-3-0) = 3$
$A_{13} = (-1)^{1+3} (6-15) =-9$ $A_{21} = (-1)^{2+1} (0-0) = 0$
$A_{22} = (-1)^{2+2} (-1-0) = -1$ $A_{23} = (-1)^{2+1} (2-0) = -2$
$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (0-0) =0$
$A_{33} = (-1)^{3+3} (3-0) = 3$
So, we have $adjA = \begin{bmatrix} -3 &0 &0 \\ 3& -1 &0 \\ -9& -2 &3 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$= \frac{-1}{3}\begin{bmatrix} -3 &0 &0 \\ 3 & -1& 0\\ -9 &-2 &3 \end{bmatrix}$
Question:9 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix}$
Answer:
Given the matrix : $\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix} =A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
$|A| = 2(-1-0)-1(4-0)+3(8-7) =-2-4+3 = -3$
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (-1-0) = -1$ $A_{12} = (-1)^{1+2} (4-0) = -4$
$A_{13} = (-1)^{1+3} (8-7) =1$ $A_{21} = (-1)^{2+1} (1-6) = 5$
$A_{22} = (-1)^{2+2} (2+21) = 23$ $A_{23} = (-1)^{2+1} (4+7) = -11$
$A_{31} = (-1)^{3+1} (0+3) = 3$ $A_{32} = (-1)^{3+2} (0-12) =12$
$A_{33} = (-1)^{3+3} (-2-4) = -6$
So, we have $adjA = \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$
Question:10 Find the inverse of each of the matrices (if it exists).
$\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix}$
Answer:
Given the matrix : $\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix} = A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
$|A| = 1(8-6)+1(0+9)+2(0-6) =2+9-12 = -1$
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (8-6) = 2$ $A_{12} = (-1)^{1+2} (0+9) = -9$
$A_{13} = (-1)^{1+3} (0-6) =-6$ $A_{21} = (-1)^{2+1} (-4+4) = 0$
$A_{22} = (-1)^{2+2} (4-6) = -2$ $A_{23} = (-1)^{2+1} (-2+3) = -1$
$A_{31} = (-1)^{3+1} (3-4) = -1$ $A_{32} = (-1)^{3+2} (-3-0) =3$
$A_{33} = (-1)^{3+3} (2-0) = 2$
So, we have $adjA = \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$A^{-1} = \frac{1}{-1} \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$
$A^{-1} = \begin{bmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6& 1 &-2 \end{bmatrix}$
Question:11 Find the inverse of each of the matrices (if it exists).
Answer:
Given the matrix : $\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix} =A$
To find the inverse we have to first find adjA then as we know the relation:
$A^{-1} = \frac{1}{|A|}adjA$
So, calculating |A| :
$|A| = 1(-\cos^2 \alpha-\sin^2 \alpha)+0(0-0)+0(0-0)$
$=-(\cos^2 \alpha + \sin^2 \alpha) = -1$
Now, calculating the cofactors terms and then adjA.
$A_{11} = (-1)^{1+1} (-\cos^2 \alpha - \sin^2 \alpha) = -1$ $A_{12} = (-1)^{1+2} (0-0) = 0$
$A_{13} = (-1)^{1+3} (0-0) =0$ $A_{21} = (-1)^{2+1} (0-0) = 0$
$A_{22} = (-1)^{2+2} (-\cos \alpha-0) = -\cos \alpha$ $A_{23} = (-1)^{2+1} (\sin \alpha-0) = -\sin \alpha$
$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (\sin \alpha-0) =-\sin \alpha$
$A_{33} = (-1)^{3+3} (\cos \alpha - 0) = \cos \alpha$
So, we have $adjA = \begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix}$
Therefore inverse of A will be:
$A^{-1} = \frac{1}{|A|}adjA$
$A^{-1} = \frac{1}{-1}\begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix} = \begin{bmatrix}1 &0 &0 \\ 0&\cos \alpha &\sin \alpha \\ 0& \sin \alpha &-\cos \alpha \end{bmatrix}$
Answer:
We have $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$.
then calculating;
$AB = \begin{bmatrix} 3 &7 \\ 2& 5 \end{bmatrix}\begin{bmatrix} 6 &8 \\ 7& 9 \end{bmatrix}$
$=\begin{bmatrix} 18+49 &24+63 \\ 12+35 & 16+45 \end{bmatrix} = \begin{bmatrix} 67 &87 \\ 47& 61 \end{bmatrix}$
Finding the inverse of AB.
Calculating the cofactors fo AB:
$AB_{11}=(-1)^{1+1}(61) = 61$ $AB_{12}=(-1)^{1+2}(47) = -47$
$AB_{21}=(-1)^{2+1}(87) = -87$ $AB_{22}=(-1)^{2+2}(67) = 67$
Then we have adj(AB):
$adj(AB) = \begin{bmatrix} 61 &-87 \\ -47& 67 \end{bmatrix}$
and |AB| = 61(67) - (-87)(-47) = 4087-4089 = -2
Therefore we have inverse:
$(AB)^{-1}=\frac{1}{|AB|}adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 &-87 \\ -47 & 67 \end{bmatrix}$
$= \begin{bmatrix} \frac{-61}{2} &\frac{87}{2} \\ \\ \frac{47}{2} & \frac{-67}{2} \end{bmatrix}$ .....................................(1)
Now, calculating inverses of A and B.
|A| = 15-14 = 1 and |B| = 54- 56 = -2
$adjA = \begin{bmatrix} 5 &-7 \\ -2 & 3 \end{bmatrix}$ and $adjB = \begin{bmatrix} 9 &-8 \\ -7 & 6 \end{bmatrix}$
therefore we have
$A^{-1} = \frac{1}{|A|}adjA= \frac{1}{1} \begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$ and $B^{-1} = \frac{1}{|B|}adjB= \frac{1}{-2} \begin{bmatrix} 9&-8 \\ -7& 6 \end{bmatrix}= \begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}$
Now calculating$B^{-1}A^{-1}$.
$B^{-1}A^{-1} =\begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}\begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$
$=\begin{bmatrix} \frac{-45}{2}-8 && \frac{63}{2}+12 \\ \\ \frac{35}{2}+6 && \frac{-49}{2}-9 \end{bmatrix} = \begin{bmatrix} \frac{-61}{2} && \frac{87}{2} \\ \\ \frac{47}{2} && \frac{-67}{2} \end{bmatrix}$........................(2)
From (1) and (2) we get
$\small (AB)^{-1} = B^{-1}A^{-1}$
Hence proved.
Question:13 If $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$? , show that $A^2-5A+7I=O$. Hence find $A^{-1}$.
Answer:
Given $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$ then we have to show the relation $A^2-5A+7I=0$
So, calculating each term;
$A^2 = \begin{bmatrix} 3& 1\\ -1& 2 \end{bmatrix}\begin{bmatrix} 3&1 \\ -1& 2 \end{bmatrix} = \begin{bmatrix} 9-1 &3+2 \\ -3-2&-1+4 \end{bmatrix} = \begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix}$
therefore $A^2-5A+7I$;
$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - 5\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix} + 7 \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}$
$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - \begin{bmatrix} 15 &5 \\ -5& 10 \end{bmatrix} + \begin{bmatrix} 7 &0 \\ 0 & 7 \end{bmatrix}$
$\begin{bmatrix} 8-15+7 &&5-5+0 \\ -5+5+0 && 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 &&0 \\ 0 && 0 \end{bmatrix}$
Hence $A^2-5A+7I = 0$.
$\therefore A.A -5A = -7I$
$\Rightarrow A.A(A^{-1}) - 5AA^{-1} = -7IA^{-1}$
[Post multiplying by $A^{-1}$, also $|A| \neq 0$]
$\Rightarrow A(AA^{-1}) - 5I = -7A^{-1}$
$\Rightarrow AI - 5I = -7A^{-1}$
$\Rightarrow -\frac{1}{7}(AI - 5I)= \frac{1}{7}(5I-A)$
$\therefore A^{-1} = \frac{1}{7}(5\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}-\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix}) = \frac{1}{7}\begin{bmatrix} 2 &-1 \\ 1& 3 \end{bmatrix}$
Answer:
Given $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ then we have the relation $A^2+aA+bI=O$
So, calculating each term;
$A^2 = \begin{bmatrix} 3& 2\\ 1& 1 \end{bmatrix}\begin{bmatrix} 3&2 \\ 1& 1 \end{bmatrix} = \begin{bmatrix} 9+2 &6+2 \\ 3+1&2+1 \end{bmatrix} = \begin{bmatrix} 11 &8 \\ 4& 3 \end{bmatrix}$
therefore $A^2+aA+bI=O$;
$=\begin{bmatrix}11 &8 \\ 4& 3 \end{bmatrix} + a\begin{bmatrix} 3 &2 \\ 1& 1 \end{bmatrix} + b \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$
$\begin{bmatrix} 11+3a+b & 8+2a \\ 4+a & 3+a+b \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$
So, we have equations;
$11+3a+b = 0,\ 8+2a = 0$ and $4+a = 0,and\ \ 3+a+b = 0$
We get $a = -4\ and\ b= 1$.
Answer:
Given matrix: $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$;
To show: $\small A^3-6A^2+5A+11I=O$
Finding each term:
$A^{2} = \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix}$
$= \begin{bmatrix} 1+1+2 &&1+2-1 &&1-3+3 \\ 1+2-6 &&1+4+3 &&1-6-9 \\ 2-1+6 &&2-2-3 && 2+3+9 \end{bmatrix}$
$= \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}$
$A^{3} = \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$
$= \begin{bmatrix} 4+2+2 &4+4-1 &4-6+3 \\ -3+8-28 &-3+16+14 & -3-24-42 \\ 7-3+28&7-6-14 &7+9+42 \end{bmatrix}$
$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}$
So now we have, $\small A^3-6A^2+5A+11I$
$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-6\begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}+5\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+11\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$
$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-\begin{bmatrix} 24 &&12 &&6 \\ -18 &&48 &&-84 \\ 42 &&-18 && 84 \end{bmatrix}+\begin{bmatrix} 5 &5 &5 \\ 5 &10 &-15 \\ 10 &-5 &15 \end{bmatrix}+\begin{bmatrix} 11 &0 &0 \\ 0 &11 & 0\\ 0& 0& 11 \end{bmatrix}$
$= \begin{bmatrix} 8-24+5+11 &7-12+5 &1-6+5 \\ -23+18+5&27-48+10+11 &-69+84-15 \\ 32-42+10&-13+18-5 & 58-84+15+11 \end{bmatrix}$
$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = 0$
Now finding the inverse of A;
Post-multiplying by $A^{-1}$ as, $|A| \neq 0$
$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +5AA^{-1}+11IA^{-1} = 0$
$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +5(AA^{-1})=- 11IA^{-1}$
$\Rightarrow A^{2}-6A +5I=- 11A^{-1}$
$A^{-1} = \frac{-1}{11}(A^{2}-6A+5I)$ ...................(1)
Now,
From equation (1) we get;
$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}-6\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+5\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$
$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4-6+5 &&2-6 &&1-6 \\ -3-6 &&8-12+5 &&-14+18 \\ 7-12 &&-3+6 && 14-18+5 \end{bmatrix}$
$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 3 &&-4 &&-5 \\ -9 &&1 &&4 \\ -5 &&3 && 1 \end{bmatrix}$
Answer:
Given matrix: $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$;
To show: $\small A^3-6A^2+9A-4I$
Finding each term:
$A^{2} = \begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$
$= \begin{bmatrix} 4+1+1 &&-2-2-1 &&2+1+2 \\ -2-2-1 &&1+4+1 &&-1-2-2 \\ 2+1+2 &&-1-2-2 && 1+1+4 \end{bmatrix}$
$= \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}$
$A^{3} =\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$
$= \begin{bmatrix} 12+5+5 &-6-10-5 &6+5+10 \\ -10-6-5 &5+12+5 & -5-6-10 \\ 10+5+6&-5-10-6 &5+5+12 \end{bmatrix}$
$= \begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}$
So now we have, $\small A^3-6A^2+9A-4I$
$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}-6 \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}+9\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}-4\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$
$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}- \begin{bmatrix} 36 &&-30 &&30 \\ -30 &&36 &&-30 \\30 &&-30 && 36 \end{bmatrix}+\begin{bmatrix} 18 &-9 &9 \\ -9 &18 &-9 \\ 9 &-9 &18 \end{bmatrix}-\begin{bmatrix} 4 &0 &0 \\ 0 &4 & 0\\ 0& 0& 4 \end{bmatrix}$
$= \begin{bmatrix} 22-36+18-4 &-21+30-9 &21-30+9 \\ -21+30-9&22-36+18-4 &-21+30-9 \\ 21-30+9&-21+30-9 & 22-36+18-4 \end{bmatrix}$
$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = O$
Now finding the inverse of A;
Post-multiplying by $A^{-1}$ as, $|A| \neq 0$
$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +9AA^{-1}-4IA^{-1} = 0$
$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +9(AA^{-1})=4IA^{-1}$
$\Rightarrow A^{2}-6A +9I=4A^{-1}$
$A^{-1} = \frac{1}{4}(A^{2}-6A+9I)$ ...................(1)
Now,
From equation (1) we get;
$A^{-1} = \frac{1}{4}(\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}-6\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}+9\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$
$A^{-1} = \frac{1}{4} \begin{bmatrix} 6-12+9 &&-5+6 &&5-6 \\ -5+6 &&6-12+9 &&-5+6 \\ 5-6 &&-5+6 && 6-12+9 \end{bmatrix}$
Hence inverse of A is :
$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 &&1 &&-1 \\ 1 &&3 &&1 \\ -1 &&1 && 3 \end{bmatrix}$
Question:17 Let A be a nonsingular square matrix of order $\small 3\times 3$. Then $\small |adjA|$ is equal to
(A) $\small |A|$ (B) $\small |A|^2$ (C) $\small |A|^3$ (D) $\small 3|A|$
Answer:
We know the identity $(adjA)A = |A| I$
Hence we can determine the value of $|(adjA)|$.
Taking both sides determinant value we get,
$|(adjA)A| = ||A| I|$ or $|(adjA)||A| = ||A||| I|$
or taking R.H.S.,
$||A||| I| = \begin{vmatrix} |A| & 0&0 \\ 0&|A| &0 \\ 0&0 &|A| \end{vmatrix}$
$= |A| (|A|^2) = |A|^3$
or, we have then $|(adjA)||A| = |A|^3$
Therefore $|(adjA)| = |A|^2$
Hence the correct answer is B.
Question:18 If A is an invertible matrix of order 2, then det $\left(A^{-1}\right)$ is equal to $\dfrac{1}{\det(A)}$.
(A) $\small det(A)$ (B) $\small \frac{1}{det (A)}$ (C) $\small 1$ (D) $\small 0$
Answer:
Given that the matrix is invertible hence $A^{-1}$ exists and $A^{-1} = \frac{1}{|A|}adjA$
Let us assume a matrix of the order of 2;
$A = \begin{bmatrix} a &b \\ c &d \end{bmatrix}$.
Then $|A| = ad-bc$.
$adjA = \begin{bmatrix} d &-b \\ -c & a \end{bmatrix}$ and $|adjA| = ad-bc$
Now,
$A^{-1} = \frac{1}{|A|}adjA$
Taking determinant both sides;
$|A^{-1}| = |\frac{1}{|A|}adjA| = \begin{bmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$
$\therefore|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2}\begin{vmatrix} d &-b \\ -c& a \end{vmatrix} = \frac{1}{|A|^2}(ad-bc) =\frac{1}{|A|^2}.|A| = \frac{1}{|A|}$
Therefore we get;
$|A^{-1}| = \frac{1}{|A|}$
Hence the correct answer is B.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.4.
1. Adjoint of a Matrix: The adjoint of a square matrix is the transpose of the cofactor matrix.
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad \operatorname{then} \operatorname{adj}(A)=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
2. Inverse of a Matrix using Determinants: The inverse of a square matrix $A$, when it exists (i.e., when $\operatorname{det}(A) \neq 0$ ), is given by:
$A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj}(A)$
3. Verification and Application: Once the inverse is found, students can verify the result by checking:
$A \cdot A^{-1}=A^{-1} \cdot A=I$
This confirms that the inverse is correct.
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
No, singular matrices are not invertible.
Yes, non-singular matrices are invertible.
If an inverse of a square matrix exists then it is called an invertible matrix.
|3A| = 3^2|A| = 45
If A is a symmetric matrix then the transpose of A is A.
If A is a skew-symmetric matrix then the transpose of A is -A.
If A is a matrix and A' is the transpose of matrix A then |A| = |A'|.
Yes, every square diagonal matrix is a symmetric matrix.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters