NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 23 Apr 2025, 11:12 PM IST

Continuity is like watching your favourite TV show without any commercial breaks, where differentiability is when there are no abrupt cuts or edits, just smooth and seamless transitions. Logarithmic differentiation is a very powerful method for differentiating such complex functions which involve products or exponents. Exercise 5.5 of the chapter Continuity and Differentiability mainly focuses on logarithmic differentiation. This method can easily simplify various complex and tricky expressions, so that differentiating becomes much easier for students. That is why understanding this concept is very crucial for students in their calculus journey. This article on NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the exercise problems, which will enable the students to grasp the concepts, logic, and methods of logarithmic differentiation easily. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 5 Exercise 5.5 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.5

Question:1 Differentiate the functions w.r.t. x. $\cos x . \cos 2x .\cos 3x$

Answer:

Given function is
$y=\cos x . \cos 2x .\cos 3x$
Now, take log on both sides
$\log y=\log (\cos x . \cos 2x .\cos 3x)\\ \log y = \log \cos x + \log \cos 2x + \log \cos 3x$
Now, differentiation w.r.t. x

$\log y = \log (\cos x \cdot \cos 2x \cdot \cos 3x)$

$\frac{d(\log y)}{dx} = \frac{d(\log \cos x)}{dx} + \frac{d(\log \cos 2x)}{dx} + \frac{d(\log \cos 3x)}{dx}$

$\frac{1}{y} \cdot \frac{dy}{dx} = \left(-\sin x\right) \cdot \frac{1}{\cos x} + \left(-2\sin 2x\right) \cdot \frac{1}{\cos 2x} + \left(-3\sin 3x\right) \cdot \frac{1}{\cos 3x}$

$\frac{1}{y} \cdot \frac{dy}{dx} = -\left(\tan x + \tan 2x + \tan 3x\right) \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$

$\frac{dy}{dx} = -y\left(\tan x + \tan 2x + \tan 3x\right)$

$\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + \tan 2x + \tan 3x\right)$

Therefore, the answer is $-\cos x\cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$

Question:2. Differentiate the functions w.r.t. x.

$\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$

Answer:

Given function is
$y=\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Take log on both the sides

$\log y = \frac{1}{2} \log\left( \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} \right)$

$\log y = \frac{1}{2} \left( \log(x - 1) + \log(x - 2) - \log(x - 3) - \log(x - 4) - \log(x - 5) \right)$
Now, differentiation w.r.t. x is
$\frac{d(\log y)}{dx} = \frac{1}{2} (\frac{d(\log(x-1))}{dx}+\frac{d(\log(x-2))}{dx}-\frac{d(\log(x-3))}{dx}-\frac{d(\log(x-4))}{dx}-\\$$\frac{d(\log(x-5))}{dx})$

$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

$\frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

$\frac{dy}{dx} = \frac{1}{2} \sqrt{ \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} } \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

Therefore, the answer is $\frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$

Question:3 Differentiate the functions w.r.t. x. $(\log x ) ^{\cos x}$

Answer:

Given function is
$y=(\log x ) ^{\cos x}$
take log on both the sides
$\log y=\cos x\log (\log x )$
Now, differentiation w.r.t x is

$\frac{d(\log y)}{dx} = \frac{d(\cos x \log(\log x))}{dx}$

$\frac{1}{y} \cdot \frac{dy}{dx} = (-\sin x)(\log(\log x)) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}$

$\frac{dy}{dx} = y \left( \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} - \sin x \log(\log x) \right)$

$\frac{dy}{dx} = (\log x)^{\cos x} \left( \frac{\cos x}{x \log x} - \sin x \log(\log x) \right)$

Therefore, the answer is $(\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$

Question:4 Differentiate the functions w.r.t. x. $x ^x - 2 ^{ \sin x }$

Answer:

Given function is
$y = x ^x - 2 ^{ \sin x }$
Let's take $t = x^x$
take log on both the sides
$\log t=x\log x\\$
Now, differentiation w.r.t x is

$\log t = x \log x$

$\frac{d(\log t)}{dt} \cdot \frac{dt}{dx} = \frac{d(x \log x)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$

$\frac{1}{t} \cdot \frac{dt}{dx} = \log x + 1$

$\frac{dt}{dx} = t(\log x + 1)$

$\frac{dt}{dx} = x^x(\log x + 1) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because t = x^x)$

Similarly, take $k = 2^{\sin x}$
Now, take log on both sides and differentiate w.r.t. x

$\log k = \sin x \log 2$

$\frac{d(\log k)}{dk} \cdot \frac{dk}{dx} = \frac{d(\sin x \log 2)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$

$\frac{1}{k} \cdot \frac{dk}{dx} = \cos x \log 2$

$\frac{dk}{dx} = k(\cos x \log 2)$

$\frac{dk}{dx} = 2^{\sin x}(\cos x \log 2) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because k = 2^{\sin x})$

Now,
$\frac{dy}{dx} = \frac{dt}{dx}-\frac{dk}{dx}\\ \frac{dy}{dx} = x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$

Therefore, the answer is $x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$

Question:5 Differentiate the functions w.r.t. x. $( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$

Answer:

Given function is
$y=( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Take log on both sides
$\log y=\log [( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4]\\ \log y = 2\log(x+3)+3\log(x+4)+4\log(x+5)$
Now, differentiate w.r.t. x we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} + 3 \cdot \frac{1}{x+4} + 4 \cdot \frac{1}{x+5}$

$\frac{dy}{dx} = y\left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$

$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$

$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right)$

$\frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2 + 70x + 133)$

Therefore, the answer is $(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$

Question:6 Differentiate the functions w.r.t. x. $( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$

Answer:

Given function is
$y = ( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Let's take $t = ( x+ \frac{1}{x} ) ^ x$
Now, take log on both sides
$\log t =x \log ( x+ \frac{1}{x} )$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log \left( x + \frac{1}{x} \right) + x\left(1 - \frac{1}{x^2} \right) \cdot \frac{1}{\left( x + \frac{1}{x} \right)}$

$= \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right)$

$\frac{dt}{dx} = t \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$

$\frac{dt}{dx} = \left( x + \frac{1}{x} \right)^x \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$

Similarly, take $k = x^{1+\frac{1}{x}}$
Now, take log on both sides
$\log k = ({1+\frac{1}{x}})\log x$
Now, differentiate w.r.t. x
We get,

$\frac{1}{k} \cdot \frac{dk}{dx} = \frac{1}{x} \left( 1 + \frac{1}{x} \right) + \left(-\frac{1}{x^2} \right) \log x$

$= \frac{x^2 + 1}{x^2} + \left( -\frac{1}{x^2} \right) \log x$

$\frac{dk}{dx} = k \left( \frac{x^2 + 1 - \log x}{x^2} \right)$

$\frac{dk}{dx} = x^{x + \frac{1}{x}} \left( \frac{x^2 + 1 - \log x}{x^2} \right)$

Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$

Therefore, the answer is $\left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$

Question:7 Differentiate the functions w.r.t. x. $(\log x )^x + x ^{\log x }$

Answer:

Given function is
$y = (\log x )^x + x ^{\log x }$
Let's take $t = (\log x)^x$
Now, take log on both the sides
$\log t = x \log(\log x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\log x) + x \cdot \frac{1}{x} \cdot \frac{1}{\log x} = \log (\log x) + \frac{1}{\log x}$

$\frac{dt}{dx} = t \cdot \left( \log (\log x) + \frac{1}{\log x} \right)$

$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^x \cdot \frac{1}{\log x}$

$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^{x-1}$

Similarly, take $k = x^{\log x}$
Now, take log on both sides
$\log k = \log x \log x = (\log x)^2$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dx} =2 (\log x).\frac{1}{x} \\ \frac{dt}{dx}= k.\left ( 2 (\log x).\frac{1}{x} \right )\\ \frac{dt}{dx} = x^{\log x}.\left (2 (\log x).\frac{1}{x} \right ) = 2x^{\log x-1}.\log x$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Therefore, the answer is $(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$

Question:8 Differentiate the functions w.r.t. x. $(\sin x )^x + \sin ^{-1} \sqrt x$

Answer:

Given function is
$(\sin x )^x + \sin ^{-1} \sqrt x$
Lets take $t = (\sin x)^x$
Now, take log on both the sides
$\log t = x \log(\sin x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\sin x) + x \cdot \cos x \cdot \frac{1}{\sin x} = \log (\sin x) + x \cdot \cot x \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$

$\frac{dt}{dx} = t \cdot (\log (\sin x) + x \cdot \cot x)$

$\frac{dt}{dx} = (\sin x)^x \cdot (\log (\sin x) + x \cdot \cot x)$

Similarly, take $k = \sin^{-1}\sqrt x$
Now, differentiate w.r.t. x
We get,
$\frac{dk}{dt} = \frac{1}{\sqrt{1-(\sqrt x)^2}}.\frac{1}{2\sqrt x}= \frac{1}{2\sqrt{x-x^2}}\\ \frac{dk}{dt}=\frac{1}{2\sqrt{x-x^2}}\\$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Therefore, the answer is $(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$

Question:9 Differentiate the functions w.r.t. x $x ^ {\sin x } + ( \sin x )^{\cos x}$

Answer:

Given function is
$y = x ^ { \sin x } + ( \sin x )^ {\cos x}$
Now, take $t = x^{\sin x}$
Now, take log on both sides
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x + \frac{1}{x} \cdot \sin x$

$\frac{dt}{dx} = t \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$

$\frac{dt}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$

Similarly, take $k = (\sin x)^{\cos x}$
Now, take log on both the sides
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (-\sin x)(\log (\sin x)) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x = -\sin x \log(\sin x) + \cot x \cdot \cos x$
$\frac{dk}{dx} = k\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
$\frac{dk}{dx} = (\sin x)^{\cos x}\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
Now,
$\frac{dy}{dx} = x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Therefore, the answer is $x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$

Question:10 Differentiate the functions w.r.t. x. $x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$

Answer:

Given function is
$x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Take $t = x^{x\cos x}$
Take log on both the sides
$\log t =x\cos x \log x$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x - x \cdot \sin x \cdot \log x + \frac{1}{x} \cdot x \cdot \cos x$

$\frac{dt}{dx} = t \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$

$\frac{dt}{dx} = x^{x \cos x} \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$

Similarly,
take $k = \frac{x^2+1}{x^2-1}$
Now. differentiate it w.r.t. x
we get,
$\frac{dk}{dx} = \frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2} = \frac{2x^3-2x-2x^3-2x}{(x^2-1)^2} = \frac{-4x}{(x^2-1)^2}$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = x^{x\cos x}\left ( \log x(\cos x-x\sin x)+ \cos x \right )-\frac{4x}{(x^2-1)^2}$
Therefore, the answer is $x^{x\cos x}\left ( \cos x(\log x+1)-x\sin x\log x\right )-\frac{4x}{(x^2-1)^2}$

Question:11 Differentiate the functions w.r.t. x. $( x \cos x )^ x + ( x \sin x )^{1/ x}$

Answer:

Given function is
$f(x)=( x \cos x )^ x + ( x \sin x )^{1/ x}$
Let's take $t = (x\cos x)^x$
Now, take log on both sides
$\log t =x\log (x\cos x) = x(\log x+\log \cos x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = (\log x + \log \cos x) + x \left( \frac{1}{x} + \frac{1}{\cos x} \cdot (-\sin x) \right)$

$\frac{dt}{dx} = t \left( \log x + \log \cos x + 1 - x \tan x \right) \ \ \ \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$

$\frac{dt}{dx} = (x \cos x)^x \left( \log x + \log \cos x + 1 - x \tan x \right)$

$\frac{dt}{dx} = (x \cos x)^x \left( 1 - x \tan x + \log(x \cos x) \right)$

Similarly, take $k = (x\sin x)^{\frac{1}{x}}$
Now, take log on both the sides
$\log k = \frac{1}{x}(\log x+\log \sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = \left(\frac{-1}{x^2}\right)(\log x + \log \sin x) + \frac{1}{x} \left(\frac{1}{x} + \frac{1}{\sin x} \cdot \cos x\right)$
$\frac{dk}{dx} = \frac{k}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right) \ \ \ \ \ \ \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dk}{dx} = \frac{(x \sin x)^{\frac{1}{x}}}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right)$
$\frac{dk}{dx} = (x \sin x)^{\frac{1}{x}} \cdot \frac{x \cot x + 1 - \log(x \sin x)}{x^2}$
Now,
$\frac{dy}{dx}= \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx}= (x\cos x)^x(+1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Therefore, the answer is $(x\cos x)^x(1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$

Question:12 Find dy/dx of the functions given in Exercises 12 to 15

$x ^ y + y ^ x = 1$.

Answer:

Given function is
$f(x)=x ^ y + y ^ x = 1$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot (\log x) + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot (\log x) + \frac{y}{x}$

$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$

$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$

Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)= \frac{dt}{dx}+\frac{dk}{dx}= 0$

$ (x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) + (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right) = 0 $

$ \frac{dy}{dx} \left( x^y \log x + x y^{x - 1} \right) = -\left( y x^{y - 1} + y^x \log y \right) $

$ \frac{dy}{dx} = \frac{ -\left( y x^{y - 1} + y^x \log y \right) }{ x^y \log x + x y^{x - 1} } $

Therefore, the answer is $\frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$

Question:13 Find dy/dx of the functions given in Exercises 12 to 15.

$y^x = x ^y$

Answer:

Given function is
$f(x)\Rightarrow x ^ y = y ^ x$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot \log x + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot \log x + \frac{y}{x}$

$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$

$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$

Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)\Rightarrow \frac{dt}{dx}= \frac{dk}{dx}$

$(x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) = (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( x^y \log x - x y^{x - 1} \right) = y^x \log y - y x^{y - 1}$
$\frac{dy}{dx} = \frac{y^x \log y - y x^{y - 1}}{x^y \log x - x y^{x - 1}} = \frac{x}{y} \left( \frac{y - x \log y}{x - y \log x} \right)$

Therefore, the answer is $\frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$

Question:14 Find dy/dx of the functions given in Exercises 12 to 15. $( \cos x )^y = ( \cos y )^x$

Answer:

Given function is
$f(x)\Rightarrow (\cos x) ^ y = (\cos y) ^ x$
Now, take log on both the sides
$y\log \cos x = x \log \cos y$
Now, differentiate w.r.t x
$\frac{dy}{dx}(\log \cos x)-y\tan x = \log \cos y-x\tan y\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$\left( \frac{dy}{dx} (\log \cos x) - y \tan x \right) = \left( \log \cos y - x \tan y \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( \log \cos x + x \tan y \right) = \log \cos y + y \tan x$
$\frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$

Therefore, the answer is $\frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$

Question:15 Find dy/dx of the functions given in Exercises 12 to 15. $xy = e ^{x-y}$

Answer:

Given function is
$f(x)\Rightarrow xy = e ^{x-y}$
Now, take log on both the sides

$\log x + \log y = (x - y)(1) \qquad (\because \log e = 1)$

$\log x + \log y = x - y$

Now, differentiate w.r.t x
$\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}$
By taking similar terms on same side
We get,
$(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}$
Therefore, the answer is $\frac{y}{x}.\frac{x-1}{y+1}$

Question:16 Find the derivative of the function given by $f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find

f ' (1)

Answer:

Given function is
$y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$
Take log on both sides
$\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)$
NOW, differentiate w.r.t. x

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}$

$\frac{dy}{dx} = y \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$

$\frac{dy}{dx} = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$

Therefore, $f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Now, the value of $f^{'}(1)$ is
$f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120$

Question:17 (1) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(i) by using product rule

Answer:

Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, we need to differentiate using the product rule
$f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\$

$= (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$

$= 2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56$

$= 5x^4 - 20x^3 + 45x^2 - 52x + 11$

Therefore, the answer is $5x^4 -20x^3+45x^2-52x+11$

Question:17 (2) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(ii) by expanding the product to obtain a single polynomial.

Answer:

Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Multiply both to obtain a single higher degree polynomial
$f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)$
$= x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72$
$= x^5-5x^4+15x^3-26x^2+11x+72$
Now, differentiate w.r.t. x
we get,
$f^{'}(x)=5x^4-20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-52x+11$

Question:17 (3) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(iii) by logarithmic differentiation.
Do they all give the same answer?

Answer:

Given function is
$y=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, take log on both the sides
$\log y = \log (x^2-5x+8)+\log (x^3+7x+9)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot (2x - 5) + \frac{1}{x^3 + 7x + 9} \cdot (3x^2 + 7)$

$\frac{dy}{dx} = y \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$

$\frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$

$\frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)$

$\frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 56x + 11$

Therefore, the answer is $5x^4-20x^3+45x^2-56x+11$
And yes they all give the same answer

Question:18 If u, v and w are functions of x, then show that $\frac{d}{dx} ( u,v,w) = \frac{du}{dx} v. w +u . \frac{dv }{dx } v. w+ u . \frac{dv}{dx } . w+u.v \frac{dw}{dx}$ in two ways - first by repeated application of product rule, second by logarithmic differentiation.

Answer:

It is given that u, v and w are the functions of x
Let $y = u.v.w$
Now, we differentiate using product rule w.r.t x
First, take $y = u.(vw)$
Now,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u$ -(i)
Now, again by the product rule
$\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v$
Put this in equation (i)
we get,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, by product rule we proved it

Now, by taking the log
Again take $y = u.v.w$
Now, take log on both sides
$\log y = \log u + \log v + \log w$
Now, differentiate w.r.t. x
we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx}$

$\frac{dy}{dx} = y \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$

$\frac{dy}{dx} = (u v w) \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$

$\frac{dy}{dx} = \frac{du}{dx} \cdot (v w) + \frac{dv}{dx} \cdot (u w) + \frac{dw}{dx} \cdot (u v)$

Hence, we proved it by taking the log


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.5

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.5 are:

  • Logarithmic differentiation: Logarithmic differentiation is a useful method for differentiating complex expressions involving products and exponents. You should always try to apply logarithms to make the expressions easier to differentiate.
  • Applications of logarithmic properties: Some useful logarithm properties are:
    $\log(ab)= \log a+\log b$

$\log(\frac{a}{b})=\log a- \log b$

$\log(a^n)=n\log a$

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What is the exam duration of CBSE Class 12 Maths ?
A:

Total of 3 hours will be given to you to complete the CBSE Class 12 Maths paper.

Q: What is the differentiation of e^(2x) ?
A:

The differentiation of e^(2x) is 2 e^(2x).

Q: Find the differentiation of 1/x ?
A:

d(1/x)/dx = -1/x^2

Q: Does logarithmic differentiation and differentiation of logarithmic function is same ?
A:

No,  logarithmic differentiation and differentiation of logarithmic function are different concepts.

Q: What is use of logarithmic differentiation ?
A:

Logarithmic differentiation is useful for differentiating the function raised to the power of some variable or function.

Q: What is weightage of Vector Algebra if the CBSE Class 12 Maths board exam ?
A:

The weightage of Vector Algebra is 7 marks in the CBSE Class 12 Maths board exam. For good score follow NCERT book. To solve more problems NCERT exemplar and previous year papers can be used.

Q: Can i get CBSE Class 12 Syllabus ?
A:

Click on the link to get CBSE Class 12 Syllabus.

Q: What is the application process for CBSE Class 12 ?
A:

Click on the link to get application process for CBSE Class 12

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Upcoming Dates
UICO Exam Date

28 Dec'25 - 28 Dec'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,