NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 24 Apr 2025, 03:04 PM IST

Definite integrals are all about mastering the art of accumulation, it's like how the little changes in areas, distances, and volumes add up over an interval. In exercise 7.10 of the chapter Integrals, we will learn about some properties of definite integrals. These properties will help the students simplify and evaluate problems related to definite integrals with ease. This article on the NCERT Solutions for Exercise 7.10 Class 12 Maths Chapter 7 - Integrals, provides detailed and step-by-step solutions to the problems given in the exercise, so that students will be able to clear any doubts they have and understand the applications of the properties of definite integrals. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 7 Exercise 7.10 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.10

Question 1: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2}\cos^2 x dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)

By using

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :-

$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$

or

$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)

Adding both (i) and (ii), we get :-

$\int_0^{\frac{\pi}{2}} \text{cos}^2 x\ dx + \int_0^{\frac{\pi}{2}} \text{sin}^2 x\ dx = 2I$

$\int_0^{\frac{\pi}{2}} (\text{cos}^2 x + \text{sin}^2 x)\ dx = 2I$

$\int_0^\frac{\pi}{2}1. dx\ =\ 2I$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 2: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .......................................................................... (i)

By using ,

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$

or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

$2I\ =\ \int_0^\frac{\pi}{2}1.dx$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 3: By using the properties of definite integrals, evaluate the integral

$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$

Answer:

We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$

or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{\ (\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x)\,dx}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 4: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$

or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{(\text{sin}^5 x + \text{cos}^5 x)\,dx}{\text{sin}^5 x + \text{cos}^5 x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 5: By using the properties of definite integrals, evaluate the integral

$\int_{-5}^5|x+2|dx$

Answer:

We have, $I\ =\ \int_{-5}^5|x+2|dx$

For opening the modulas we need to define the bracket :

If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).

So the integral becomes :-

$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$

This gives $I\ =\ 29$

Question 6: By using the properties of definite integrals, evaluate the integral

$\int_2^8|x-5|dx$

Answer:

We have, $I\ =\ \int_{2}^8|x-5|dx$

For opening the modulas we need to define the bracket :

If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).

So the integral becomes:-

$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$

This gives $I\ =\ 9$

Question 7: By using the properties of definite integrals, evaluate the integral

$\int^1_0x(1-x)^ndx$

Answer:

We have $I\ =\ \int^1_0x(1-x)^ndx$

Using the property : -

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get : -

$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$

$I\ =\ \int^1_0(1-x)x^n\ dx$

or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$

$=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$

$=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$

or $I\ =\ \frac{1}{(n+1)(n+2)}$

Question 8: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$

or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$

or $2I\ =\ \left [ x\log2 \right ]^{\frac{\pi }{4}}_0$

or $I\ =\ \frac{\pi }{8}\log2$

Question 9: By using the properties of definite integrals, evaluate the integral

$\int_0^2x\sqrt{2-x}dx$

Answer:

We have $I\ =\ \int_0^2x\sqrt{2-x}dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$

or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$

or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$

or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$

or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$

or $I\ =\ \frac{16\sqrt{2}}{15}$

Question 10: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)

By using the identity :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)

Adding (i) and (ii) we get :-

$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$

or $I\ =\ -\log 2\left [ \frac{\pi }{2} \right ]$

or $I\ =\ \frac{\pi }{2}\log\frac{1}{2}$

Question 11: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.

Also,

$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$

So,

$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$

or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\pi }{2}}_0$

or $I\ =\ \frac{\pi }{2}$

Question 12: By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

$\int_0^\pi\frac{xdx}{1+\sin x}$

Answer:

We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)

By using the identity :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin (\pi -x)}$

or $I\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin x}$ ............................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\frac{\pi}{1+\sin x} dx$

or $2I\ =\ \pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$

or $2I\ =\ \pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$

or $I\ =\ \pi$

Question 13: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

We know that $\sin^7x$ is an odd function.

So the following property holds here:-

$\int_{-a}^{a}f(x)dx\ =\ 0$

Hence

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$

Question 14: By using the properties of definite integrals, evaluate the integral.

$\int_0^{2\pi}\cos^5xdx$

Answer:

We have $I\ =\ \int_0^{2\pi}\cos^5xdx$

It is known that :-

$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f (2a - x) = f(x)

$=\ 0$ If f (2a - x) = - f(x)

Now, using the above property

$\cos^5(\pi - x)\ =\ - \cos^5x$

Therefore, $I\ =\ 0$

Question 15: By using the properties of definite integrals, evaluate the integral.

$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx$

Answer:

We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................................................................(i)

By using the property :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get ,

$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$

or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ......................................................................(ii)

Adding both (i) and (ii), we get

$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$

Thus $I = 0$

Question 16: By using the properties of definite integrals, evaluate the integral.

$\int_0^\pi\log(1 +\cos x)dx$

Answer:

We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)

By using the property:-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

or

$I = \int_0^\pi \log(1 + \cos(\pi - x))\,dx$

$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$

or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$

or $2I\ =\ 2\int_0^\pi\log \sin xdx$

or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)

Adding (iv) and (v) we get,

$I\ =\ -\pi \log2$

Question 17: By using the properties of definite integrals, evaluate the integral.

$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$

Answer:

We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ................................................................................(i)

By using, we get

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .................................................................(ii)

Adding (i) and (ii) we get :

$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$

or $2I\ =\ \left [ x \right ]^a_0 = a$

or $I\ =\ \frac{a}{2}$

Question 18: By using the properties of definite integrals, evaluate the integral.

$\int_0^4 |x-1|dx$

Answer:

We have, $I\ =\ \int_{0}^4|x-1|dx$

For opening the modulas we need to define the bracket :

If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).

So the integral becomes:-

$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$

or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$

This gives $I\ =\ 5$

Question 19: Show that $\int_0^a f(x)g(x)dx = 2\int_0^af(x)dx$ if $f$ and $g$ are defined as $f(x) = f(a-x)$ and $g(x) + g(a-x) = 4$

Answer:

Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)

This can also be written as :

$I\ =\ \int_0^a f(a-x)g(a-x)dx$

or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$

$2I\ =\ \int_0^a f(x)4dx$

or $I\ =\ 2\int_0^a f(x)dx$

Question 20: Choose the correct answer

The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is

(A) 0

(B) 2

(C) $\pi$

(D) 1

Answer:

We have

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$

This can be written as :

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$

Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$

And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$

Using the above property I become:-

$I = 0 + 0 + 0 + 2\int_0^{\frac{\pi}{2}} 1\,dx$

$I = 2\left[ x \right]_0^{\frac{\pi}{2}}$

$I = \pi$

Thus, correct answer is $\pi$.

Question 21: Choose the correct answer

The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is

(A) 2

(B) 3/4

(C) 0

(D) -2

Answer:

We have

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ .................................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$

or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ .............................................................................(ii)

Adding (i) and (ii), we get:

$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$

or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$

Thus, $I\ =\ 0$


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.10

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.10 is:

Some properties of definite integrals: Some useful properties of definite integrals are given below that will help evaluate definite integrals easily.

  • $\int_a^b f(x) d x=\int_a^b f(t) d t$
  • $\int_a^b f(x) d x=-\int_b^a f(x) d x$
  • $\int_a^a f(x) d x=0$
  • $\int_a^b f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) dx$
  • $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
  • $\int_0^a f(x) d x=\int_0^a f(a-x) dx$
  • $\int_{-a}^a f(x) d x=2 \int_0^a f(x) d x$, if $f$ is an even function, i.e., if $f(-x)=f(x)$.
  • $\int_{-a}^a f(x) d x=0$, if $f$ is an odd function, i.e., if $f(-x)=-f(x)$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Two types of integration are …………. And ………….. ?
A:

Two types of integration are Definite and indefinite Integrals. 

Q: What can be the limit of an integral ?
A:

It can be anything in which the given function is real. 

Q: Integrals are used in …………... ?
A:

Integrals are used in finding area, volume, displacement etc. 

Q: Can one skip exercise 7.11 Class 12 Maths ?
A:

No, one should do this exercise as 5 marks questions can be asked in the Board examination. 

Q: Which topics are dealt in Exercise 7.11 Class 12 Maths?
A:

Some definite integrals of advance level are discussed in this exercise. 

Q: Can we take some assumptions in proof related questions ?
A:

Yes, provided it fulfills the demand of the question.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Upcoming Dates
UICO Exam Date

28 Dec'25 - 28 Dec'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,