CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Imagine you are a math detective with many tiny, scattered clues. Your job now is to piece them together and reconstruct the full story. An integral is like the Sherlock Holmes of calculus; it pieces together countless tiny clues scattered across a problem. Each clue is a small part of a whole — an area, a distance, or a total quantity. NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 Integrals discusses an essential part of integrals: Integration by Partial Functions. Without knowledge of these concepts, students will struggle to integrate rational functions and fractions, where the numerator and denominator are polynomials.
This Story also Contains
Experienced Careers360 experts diligently curate the 12th-class Maths exercise 7.5 of NCERT by following the latest CBSE guidelines.
Question 1: Integrate the rational function $\frac{x }{( x +1)( x+2)}$
Answer:
Given function $\frac{x }{( x +1)( x+2)}$
Partial function of this function:
$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\implies x = A(x+2)+B(x+1)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$2A+B =0$
On solving, we get
$A = -1,\ \text{and}\ B = 2$
$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$
$=-\log|x+1| +2\log|x+2| +C$
$=\log(x+2)^2-\log|x+1|+C$
$=\log\frac{(x+2)^2}{(x+1)}+C$
Question 2: Integrate the rational function $\frac{1}{x^2 -9 }$
Answer:
Given function $\frac{1}{x^2 -9 }$
The partial function of this function:
$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1 = A(x-3)+B(x+3)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$-3A+3B =1$
On solving, we get
$A = -\frac{1}{6},\ \text{and}\ B = \frac{1}{6}$
$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$
$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$
$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$
$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$
Question 3: Integrate the rational function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = 1,\ B = -5,\ \text{and}\ C = 4$
$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$
That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$
$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$
Question 4: Integrate the rational function $\frac{x }{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{x }{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = \frac{1}{2},\ B = -2,$ and $C = \frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$
$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$Question 5: Integrate the rational function $\frac{2x}{x^2 + 3x +2 }$
Answer:
Given function $\frac{2x}{x^2 + 3x +2 }$
Partial function of this function:
$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2x = A(x+2)+B(x+1)$ ...........(1)
Now, substituting $x = -1$ and $-2$ respectively in equation (1), we get
$A ={-2},\ B=4$
$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$
That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$
$=4\log|x+2| -2\log|x+1| +C$
Question 6: Integrate the rational function $\frac{1- x^2 }{ x ( 1- 2x )}$
Answer:
Given function $\frac{1- x^2 }{ x ( 1- 2x )}$
Integral is not a proper fraction so,
Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get
$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$
Partial function of this function:
$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$
$(2-x) =A(1-2x)+Bx$ ...........(1)
Now, substituting $x = 0$ and $\frac{1}{2}$ respectively in equation (1), we get
$A =2,\ B=3$
$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$
Now, substituting in equation (1) we get
$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$
$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$
$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$
$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$
Question 7: Integrate the rational function $\frac{x }{( x^2+1 )( x-1)}$
Answer:
Given function $\frac{x }{( x^2+1 )( x-1)}$
Partial function of this function:
$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$
$x = (Ax+B)(x-1)+C(x^2+1)$
$x=Ax^-Ax+Bc-B+Cx^2+C$
Now, equating the coefficients of $x^2, x$ and the constant term, we get
$A+C = 0$
$-A+B =1$ and $-B+C = 0$
On solving these equations, we get
$A = -\frac{1}{2},\ B = \frac{1}{2},\ \text{and}\ C = \frac{1}{2}$
From equation (1), we get
$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$
$\implies \int \frac{x}{(x^2+1)(x-1)}$
$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$
$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$
Now, consider $\int \frac{2x}{x^2+1} dx$ ,
and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$
So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$
$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or
$\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$
Question 8: Integrate the rational function $\frac{x }{( x+1)^2 ( x+2)}$
Answer:
Given function $\frac{x }{( x+1)^2 ( x+2)}$
Partial function of this function:
$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$
$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$
Now, putting $x=1$ in the above equation, we get
$B =\frac{1}{3}$
By equating the coefficients of $x^2$ and constant term, we get
$A+C=0$
$-2A+2B+C = 0$
then after solving, we get
$A = \frac{2}{9}$ and $C = \frac{-2}{9}$
Therefore,
$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$
$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 9: Integrate the rational function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
Answer:
Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$
Partial function of this function:
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$
$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$
$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)
Now, putting $x=1$ in the above equation, we get
$B =4$
By equating the coefficients of $x^2$ and $x$ , we get
$A+C=0$
$B-2C =3$
then after solving, we get
$A = -\frac{1}{2}$ and $C = \frac{1}{2}$
Therefore,
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$
$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
Question 10: Integrate the rational function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
Answer:
Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$
The partial function of this function:
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$
$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$
Equating the coefficients of $x^2$ and $x$, we get
$B = -\frac{1}{10},\ A = \frac{5}{2}$ and $C = -\frac{24}{5}$
Therefore,
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$
$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$
$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 11: Integrate the rational function $\frac{5x}{(x+1)(x^2-4)}$
Answer:
Given function $\frac{5x}{(x+1)(x^2-4)}$
can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$
The partial function of this function:
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Now, substituting the value of $x = -1, -2,$ and $2$ respectively in the equation above, we get
$A = \frac{5}{3},\ B = \frac{-5}{2}$ and $C = \frac{5}{6}$
Therefore,
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$
Question 12: Integrate the rational function $\frac{x^3 + x +1}{ x^2-1}$
Answer:
Given function $\frac{x^3 + x +1}{ x^2-1}$
As the given integral is not a proper fraction.
So, we divide $(x^3+x+1)$ by $x^2-1$ , we get
$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$
can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$
$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)
Now, substituting $x = 1$ and $x = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = \frac{3}{2}$
Therefore,
$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$
$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$
Question 13: Integrate the rational function $\frac{2}{(1-x)(1+ x^2)}$
Answer:
Given function $\frac{2}{(1-x)(1+ x^2)}$
can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$
$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)
$2 =A +Ax^2 +Bx-Bx^2+C-Cx$
Now, equating the coefficient of $x^2, x,$ and constant term, we get
$A-B= 0$ , $B-C = 0$ , and $A+C =2$
Solving these equations, we get
$A = 1,\ B = 1$ and $C = 1$
Therefore,
$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$
$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$
$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$
Question 14: Integrate the rational function $\frac{3x-1}{(x+2)^2}$
Answer:
Given function $\frac{3x-1}{(x+2)^2}$
can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$
$3x-1 = A(x+2)+B$
Now, equating the coefficient of $x$ and constant term, we get
$A=3$ and $2A+B = -1$ ,
Solving these equations, we get
$B=-7$
Therefore,
$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$
$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$
$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$
$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$
Question 15: Integrate the rational function $\frac{1}{x^4 -1 }$
Answer:
Given function $\frac{1}{x^4 -1 }$
can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$
The partial fraction of above equation,
$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$
$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$
$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$
Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get
$A+B+C = 0$ and $-A+B+D = 0$
$A+B-C = 0$ and $-A+B-D = 1$
Solving these equations, we get
$A = -\frac{1}{4},\ B = \frac{1}{4},\ C = 0$ and $D = -\frac{1}{2}$
Therefore,
$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$
$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$
$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$
Question 16: Integrate the rational function $\frac{1}{x ( x^n+1)}$
[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]
Answer:
Given function $\frac{1}{x ( x^n+1)}$
Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$
$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$
Putting $x^n =t$
$\therefore x^{n-1}dx =dt$
can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$
$1 = A(1+t)+Bt$ ................(1)
Now, substituting $t = 0,-1$ in equation (1), we get
$A = 1$ and $B = -1$
$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$
$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$
$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$
$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$
$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$
Question 17: Integrate the rational function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
[Hint : Put $\sin x = t$ ]
Answer:
Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
Applying the given hint: putting $\sin x =t$
We get, $\cos x dx =dt$
$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$
Partial fraction of above equation,
$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1 = A(2-t)+B(1-t)$ ................(1)
Now, substituting $t = 2$ and $1$ in equation (1), we get
$A = 1\ \text{and}\ B = -1$
$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$
$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$
$= -\log|1-t| +\log|2-t| +C$
$= \log\left | \frac{2-t}{1-t} \right |+C$
Back substituting the value of t in the above equation, we get
$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$
Question 18: Integrate the rational function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
Answer:
Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$
Partial fraction of above equation,
$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$
$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$
$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$
$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$
Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get
$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$
After solving these equations, we get
$A = 0,\ B = -2,\ C = 0,\ \text{and}\ D = 6$
$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$
$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$
$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$
$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$
$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$
$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$
Question 19: Integrate the rational function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Answer:
Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$
The partial fraction of above equation,
$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1= A(t+3)+B(t+1)$ ..............(1)
Now, substituting $t = -3$ and $t = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = -\frac{1}{2}$
$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
$\implies \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx = \int \left\{ \frac{1}{2(t + 1)} - \frac{1}{2(t + 3)} \right\} \, dt$
$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$
$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$
$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$
Question 20: Integrate the rational function $\frac{1}{x (x^4 -1)}$
Answer:
Given function $\frac{1}{x (x^4 -1)}$
So, we multiply numerator and denominator by $x^3$ , to obtain
$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$
$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$
Now, putting $x^4 = t$
we get, $4x^3dx =dt$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$
$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$
$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$
Back substituting the value of t,
$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$
Question 21: Integrate the rational function $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]
Answer:
Given function $\frac{1}{( e ^x-1)}$
So, applying the hint: Putting $e^x = t$
Then $e^x dx= dt$
$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$
Now, back substituting the value of t,
$= \log \left | \frac{e^x-1}{e^x} \right |+C$
Question 22: Choose the correct answer $\int \frac{x \, dx}{(x - 1)(x - 2)}$ equals
$A)\ \log \left| \frac{(x - 1)^2}{x - 2} \right| + C$
$B)\ \log \left| \frac{(x - 2)^2}{x - 1} \right| + C$
$C)\ \log \left| \left( \frac{x - 1}{x - 2} \right)^2 \right| + C$
$D)\ \log \left| (x - 1)^2 (x - 2) \right| + C$
Answer:
Given integral $\int \frac{x dx }{( x-1)(x-2) }$
Partial fraction of above equation,
$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x= A(x+2)+B(x-1)$ ..............(1)
Now, substituting $x = 1\ \text{and}\ x = 2$ in equation (1), we get
$A = -1\ \text{and}\ B = 2$
$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$
$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$
$= -\text{log}|x - 1| + 2\text{log}|x - 2| + C$
$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$
Therefore, the correct answer is $\log \left| \frac{(x - 2)^2}{x - 1} \right| + C$.
Question 23: Choose the correct answer $\int \frac{dx}{x(x^2 + 1)}$ equals
$A)\ \log |x| - \frac{1}{2} \log (x^2 + 1) + C$
$B)\ \log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$C)\ -\log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$D)\ \frac{1}{2} \log |x| + \log (x^2 + 1) + C$
Answer:
Given integral $\int \frac{dx}{x ( x ^2+1)}$
Partial fraction of above equation,
$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$
$1= A(x^2+1)+(Bx+C)x$
Now, equating the coefficients of $x^2,x,$ and the constant term, we get
$A+B = 0$ , $C=0$ , $A=1$
We have the values, $A = 1\ \text{and}\ B = -1,\ \text{and}\ C = 0$
$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$
$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$
$= \log|x| -\frac{1}{2}\log|x^2+1| +C$
Therefore, the correct answer is $\log |x| - \frac{1}{2} \log (x^2 + 1) + C$.
Also, read
Integration by Partial Fractions |
Assume a rational function is defined as the ratio of two polynomials in the form: $\int \frac{P(x)}{Q(x)} d x$ Where: - $P(x)$ and $Q(x)$ are polynomials and $Q(x)\neq 0$ - Degree of $P(x)$ < Degree of $Q(x)$ And if $Q(x)$ can be factored into linear or quadratic factors, you can write: $\frac{P(x)}{Q(x)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\ldots$ |
Also, read,
Unlock the structured NCERT solutions of other subjects provided below.
Use the following links to access step-by-step NCERT exemplar solutions of other subjects.
Frequently Asked Questions (FAQs)
Integration can be used to calculate the centre of gravity, centre of mass etc. which further helps in understanding dynamics of force, pressure etc. in real life.
Integration of cos x is sin x + c
In Board exams, questions of around 20 marks are asked directly which can be of great help to students to score well in the examination.
This exercise caters to questions of higher difficulty level. Hence it can be said that easy questions are not asked from this exercise.
Topics which are related to finding out integrals of rational functions are included in this exercise.
There are 23 main questions in this exercise along with a few subquestions.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters