NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 10:46 AM IST

Imagine you are a math detective with many tiny, scattered clues. Your job now is to piece them together and reconstruct the full story. An integral is like the Sherlock Holmes of calculus; it pieces together countless tiny clues scattered across a problem. Each clue is a small part of a whole — an area, a distance, or a total quantity. NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 Integrals discusses an essential part of integrals: Integration by Partial Functions. Without knowledge of these concepts, students will struggle to integrate rational functions and fractions, where the numerator and denominator are polynomials.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.5 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise: 7.5
  3. Topics covered in Chapter 1 Integrals: Exercise 7.5
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

Experienced Careers360 experts diligently curate the 12th-class Maths exercise 7.5 of NCERT by following the latest CBSE guidelines.

Class 12 Maths Chapter 7 Exercise 7.5 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.5

Question 1: Integrate the rational function $\frac{x }{( x +1)( x+2)}$

Answer:

Given function $\frac{x }{( x +1)( x+2)}$

Partial function of this function:

$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$

$\implies x = A(x+2)+B(x+1)$

Now, equating the coefficients of x and constant term, we obtain

$A+B =1$

$2A+B =0$

On solving, we get

$A = -1,\ \text{and}\ B = 2$

$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$

$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$

$=-\log|x+1| +2\log|x+2| +C$

$=\log(x+2)^2-\log|x+1|+C$

$=\log\frac{(x+2)^2}{(x+1)}+C$

Question 2: Integrate the rational function $\frac{1}{x^2 -9 }$

Answer:

Given function $\frac{1}{x^2 -9 }$

The partial function of this function:

$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$

$1 = A(x-3)+B(x+3)$

Now, equating the coefficients of x and constant term, we obtain

$A+B =1$

$-3A+3B =1$

On solving, we get

$A = -\frac{1}{6},\ \text{and}\ B = \frac{1}{6}$

$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$

$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$

$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$

$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$

Question 3: Integrate the rational function $\frac{3x -1}{( x-1)(x-2)(x-3)}$

Answer:

Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$

Partial function of this function:

$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$

$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)

Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get

$A = 1,\ B = -5,\ \text{and}\ C = 4$

$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$

That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$

$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$

Question 4: Integrate the rational function $\frac{x }{( x-1)(x-2)(x-3)}$

Answer:

Given function $\frac{x }{( x-1)(x-2)(x-3)}$

Partial function of this function:

$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$

$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)

Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get

$A = \frac{1}{2},\ B = -2,$ and $C = \frac{3}{2}$

$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$

That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$

$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$

Question 5: Integrate the rational function $\frac{2x}{x^2 + 3x +2 }$

Answer:

Given function $\frac{2x}{x^2 + 3x +2 }$

Partial function of this function:

$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$

$2x = A(x+2)+B(x+1)$ ...........(1)

Now, substituting $x = -1$ and $-2$ respectively in equation (1), we get

$A ={-2},\ B=4$

$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$

That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$

$=4\log|x+2| -2\log|x+1| +C$

Question 6: Integrate the rational function $\frac{1- x^2 }{ x ( 1- 2x )}$

Answer:

Given function $\frac{1- x^2 }{ x ( 1- 2x )}$

Integral is not a proper fraction so,

Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get

$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$

Partial function of this function:

$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$

$(2-x) =A(1-2x)+Bx$ ...........(1)

Now, substituting $x = 0$ and $\frac{1}{2}$ respectively in equation (1), we get

$A =2,\ B=3$

$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$

Now, substituting in equation (1) we get

$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$

$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$

$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$

$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$

Question 7: Integrate the rational function $\frac{x }{( x^2+1 )( x-1)}$

Answer:

Given function $\frac{x }{( x^2+1 )( x-1)}$

Partial function of this function:

$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$

$x = (Ax+B)(x-1)+C(x^2+1)$

$x=Ax^-Ax+Bc-B+Cx^2+C$

Now, equating the coefficients of $x^2, x$ and the constant term, we get

$A+C = 0$

$-A+B =1$ and $-B+C = 0$

On solving these equations, we get

$A = -\frac{1}{2},\ B = \frac{1}{2},\ \text{and}\ C = \frac{1}{2}$

From equation (1), we get

$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$

$\implies \int \frac{x}{(x^2+1)(x-1)}$

$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$

$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$

Now, consider $\int \frac{2x}{x^2+1} dx$ ,

and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$

So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$

$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or

$\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$

Question 8: Integrate the rational function $\frac{x }{( x+1)^2 ( x+2)}$

Answer:

Given function $\frac{x }{( x+1)^2 ( x+2)}$

Partial function of this function:

$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$

$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$

Now, putting $x=1$ in the above equation, we get

$B =\frac{1}{3}$

By equating the coefficients of $x^2$ and constant term, we get

$A+C=0$

$-2A+2B+C = 0$

then after solving, we get

$A = \frac{2}{9}$ and $C = \frac{-2}{9}$

Therefore,

$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$

$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$

$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$

$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$

Question 9: Integrate the rational function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$

Answer:

Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$

can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$

Partial function of this function:

$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$

$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$

$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)

Now, putting $x=1$ in the above equation, we get

$B =4$

By equating the coefficients of $x^2$ and $x$ , we get

$A+C=0$

$B-2C =3$

then after solving, we get

$A = -\frac{1}{2}$ and $C = \frac{1}{2}$

Therefore,

$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$

$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$

$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$

$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$

Question 10: Integrate the rational function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$

Answer:

Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$

can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$

The partial function of this function:

$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$

$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$

Equating the coefficients of $x^2$ and $x$, we get

$B = -\frac{1}{10},\ A = \frac{5}{2}$ and $C = -\frac{24}{5}$

Therefore,

$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$

$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$

$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$

$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$

$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$

$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$

$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$

Question 11: Integrate the rational function $\frac{5x}{(x+1)(x^2-4)}$

Answer:

Given function $\frac{5x}{(x+1)(x^2-4)}$

can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$

The partial function of this function:

$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$

$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$

Now, substituting the value of $x = -1, -2,$ and $2$ respectively in the equation above, we get

$A = \frac{5}{3},\ B = \frac{-5}{2}$ and $C = \frac{5}{6}$

Therefore,

$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$

$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$

Question 12: Integrate the rational function $\frac{x^3 + x +1}{ x^2-1}$

Answer:

Given function $\frac{x^3 + x +1}{ x^2-1}$

As the given integral is not a proper fraction.

So, we divide $(x^3+x+1)$ by $x^2-1$ , we get

$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$

can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$

$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)

Now, substituting $x = 1$ and $x = -1$ in equation (1), we get

$A = \frac{1}{2}$ and $B = \frac{3}{2}$

Therefore,

$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$

$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$

$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$

Question 13: Integrate the rational function $\frac{2}{(1-x)(1+ x^2)}$

Answer:

Given function $\frac{2}{(1-x)(1+ x^2)}$

can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$

$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)

$2 =A +Ax^2 +Bx-Bx^2+C-Cx$

Now, equating the coefficient of $x^2, x,$ and constant term, we get

$A-B= 0$ , $B-C = 0$ , and $A+C =2$

Solving these equations, we get

$A = 1,\ B = 1$ and $C = 1$

Therefore,

$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$

$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$

$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$

Question 14: Integrate the rational function $\frac{3x-1}{(x+2)^2}$

Answer:

Given function $\frac{3x-1}{(x+2)^2}$

can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$

$3x-1 = A(x+2)+B$

Now, equating the coefficient of $x$ and constant term, we get

$A=3$ and $2A+B = -1$ ,

Solving these equations, we get

$B=-7$

Therefore,

$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$

$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$

$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$

$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$

Question 15: Integrate the rational function $\frac{1}{x^4 -1 }$

Answer:

Given function $\frac{1}{x^4 -1 }$

can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$

The partial fraction of above equation,

$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$

$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$

$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$

Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get

$A+B+C = 0$ and $-A+B+D = 0$

$A+B-C = 0$ and $-A+B-D = 1$

Solving these equations, we get

$A = -\frac{1}{4},\ B = \frac{1}{4},\ C = 0$ and $D = -\frac{1}{2}$

Therefore,

$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$

$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$

$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$

Question 16: Integrate the rational function $\frac{1}{x ( x^n+1)}$

[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]

Answer:

Given function $\frac{1}{x ( x^n+1)}$

Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$

$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$

Putting $x^n =t$

$\therefore x^{n-1}dx =dt$

can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$

Partial fraction of above equation,

$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$

$1 = A(1+t)+Bt$ ................(1)

Now, substituting $t = 0,-1$ in equation (1), we get

$A = 1$ and $B = -1$

$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$

$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$

$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$

$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$

$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$

Question 17: Integrate the rational function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$

[Hint : Put $\sin x = t$ ]

Answer:

Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$

Applying the given hint: putting $\sin x =t$

We get, $\cos x dx =dt$

$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$

Partial fraction of above equation,

$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$

$1 = A(2-t)+B(1-t)$ ................(1)

Now, substituting $t = 2$ and $1$ in equation (1), we get

$A = 1\ \text{and}\ B = -1$

$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$

$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$

$= -\log|1-t| +\log|2-t| +C$

$= \log\left | \frac{2-t}{1-t} \right |+C$

Back substituting the value of t in the above equation, we get

$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$

Question 18: Integrate the rational function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$

Answer:

Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$

We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$

Partial fraction of above equation,

$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$

$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$

$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$

$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$

Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get

$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$

After solving these equations, we get

$A = 0,\ B = -2,\ C = 0,\ \text{and}\ D = 6$

$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$

$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$

$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$

$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$

$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$

$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$

Question 19: Integrate the rational function $\frac{2x }{( x^2 +1)( x^2 +3)}$

Answer:

Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$

Taking $x^2 = t \Rightarrow 2xdx=dt$

$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$

The partial fraction of above equation,

$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$

$1= A(t+3)+B(t+1)$ ..............(1)

Now, substituting $t = -3$ and $t = -1$ in equation (1), we get

$A = \frac{1}{2}$ and $B = -\frac{1}{2}$

$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$

$\implies \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx = \int \left\{ \frac{1}{2(t + 1)} - \frac{1}{2(t + 3)} \right\} \, dt$

$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$

$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$

$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$

Question 20: Integrate the rational function $\frac{1}{x (x^4 -1)}$

Answer:

Given function $\frac{1}{x (x^4 -1)}$

So, we multiply numerator and denominator by $x^3$ , to obtain

$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$

$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$

Now, putting $x^4 = t$

we get, $4x^3dx =dt$

Taking $x^2 = t \Rightarrow 2xdx=dt$

$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$

Partial fraction of above equation,

$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$

$1= A(t-1)+Bt$ ..............(1)

Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get

$A = -1\ \text{and}\ B = 1$

$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$

$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$

$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$

$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$

Back substituting the value of t,

$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$

Question 21: Integrate the rational function $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]

Answer:

Given function $\frac{1}{( e ^x-1)}$

So, applying the hint: Putting $e^x = t$

Then $e^x dx= dt$

$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$

Partial fraction of above equation,

$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$

$1= A(t-1)+Bt$ ..............(1)

Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get

$A = -1\ \text{and}\ B = 1$

$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$

$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$

Now, back substituting the value of t,

$= \log \left | \frac{e^x-1}{e^x} \right |+C$

Question 22: Choose the correct answer $\int \frac{x \, dx}{(x - 1)(x - 2)}$ equals

$A)\ \log \left| \frac{(x - 1)^2}{x - 2} \right| + C$

$B)\ \log \left| \frac{(x - 2)^2}{x - 1} \right| + C$

$C)\ \log \left| \left( \frac{x - 1}{x - 2} \right)^2 \right| + C$

$D)\ \log \left| (x - 1)^2 (x - 2) \right| + C$

Answer:

Given integral $\int \frac{x dx }{( x-1)(x-2) }$

Partial fraction of above equation,

$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$

$x= A(x+2)+B(x-1)$ ..............(1)

Now, substituting $x = 1\ \text{and}\ x = 2$ in equation (1), we get

$A = -1\ \text{and}\ B = 2$

$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$

$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$

$= -\text{log}|x - 1| + 2\text{log}|x - 2| + C$

$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$

Therefore, the correct answer is $\log \left| \frac{(x - 2)^2}{x - 1} \right| + C$.

Question 23: Choose the correct answer $\int \frac{dx}{x(x^2 + 1)}$ equals

$A)\ \log |x| - \frac{1}{2} \log (x^2 + 1) + C$

$B)\ \log |x| + \frac{1}{2} \log (x^2 + 1) + C$

$C)\ -\log |x| + \frac{1}{2} \log (x^2 + 1) + C$

$D)\ \frac{1}{2} \log |x| + \log (x^2 + 1) + C$

Answer:

Given integral $\int \frac{dx}{x ( x ^2+1)}$

Partial fraction of above equation,

$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$

$1= A(x^2+1)+(Bx+C)x$

Now, equating the coefficients of $x^2,x,$ and the constant term, we get

$A+B = 0$ , $C=0$ , $A=1$

We have the values, $A = 1\ \text{and}\ B = -1,\ \text{and}\ C = 0$

$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$

$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$

$= \log|x| -\frac{1}{2}\log|x^2+1| +C$

Therefore, the correct answer is $\log |x| - \frac{1}{2} \log (x^2 + 1) + C$.


Also, read

Topics covered in Chapter 1 Integrals: Exercise 7.5

Integration by Partial Fractions

Assume a rational function is defined as the ratio of two polynomials in the form:

$\int \frac{P(x)}{Q(x)} d x$

Where:

- $P(x)$ and $Q(x)$ are polynomials and $Q(x)\neq 0$

- Degree of $P(x)$ < Degree of $Q(x)$

And if $Q(x)$ can be factored into linear or quadratic factors, you can write:

$\frac{P(x)}{Q(x)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\ldots$


Also, read,

Subject-Wise NCERT Exemplar Solutions

Use the following links to access step-by-step NCERT exemplar solutions of other subjects.

Frequently Asked Questions (FAQs)

Q: Is there any real life application of Integrals ?
A:

Integration can be used to calculate the centre of gravity, centre of mass etc. which further helps in understanding dynamics of force, pressure etc. in real life. 

Q: What is the value of integration of cos x?
A:

Integration of cos x is sin x + c 

Q: How much importance does Integrals hold in Board exams ?
A:

In Board exams, questions of around 20 marks are asked directly which can be of great help to students to score well in the examination.  

Q: What is the difficulty level of questions asked in Board exams from this exercise ?
A:

This exercise caters to questions of higher difficulty level. Hence it can be said that easy questions are not asked from this exercise. 

Q: Mention some topics in Exercise 7.5 Class 12 Maths ?
A:

Topics which are related to finding out integrals of rational functions are included in this exercise. 

Q: How many questions are there in this exercise ?
A:

There are 23 main questions in this exercise along with a few subquestions.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Upcoming Dates
UICO Exam Date

28 Dec'25 - 28 Dec'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,