CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Integrals help us find the total accumulation of a quantity, like the total distance covered or the area under a curve. Definite integrals take this one step further and give us the total accumulation over a specific interval, like the total distance covered between two specific points. In exercise 7.8 of the chapter Integrals, we will deep dive into the world of definite integrals, where we will learn how definite integrals act as the limit of a sum. This article on the NCERT Solutions for Exercise 7.8 of Class 12 Maths, Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to the problems given in the exercise, which will help the students clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Evaluate the definite integral
Answer:
Given integral: $I = \int_{-1}^{1} (x+1)dx$
Consider the integral $\int (x+1)dx$
$\int (x+1)dx = \frac{x^2}{2}+x$
So, we have the function of $x$ , $f(x) = \frac{x^2}{2}+x$
Now, by 4the Second fundamental theorem of calculus, we have
$I = f(1)-f(-1)$
$= \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{2} - 1 \right)$
$= \frac{1}{2} + 1 - \frac{1}{2} + 1$
$= 2$
Question 2: Evaluate the definite integral
Answer:
Given integral: $I = \int_2^3\frac{1}{x}dx$
Consider the integral $\int_2^3\frac{1}{x}dx$
$\int \frac{1}{x}dx = \log|x|$
So, we have the function of $x$ , $f(x) = \log|x|$
Now, by Second fundamental theorem of calculus, we have
$I = f(3)-f(2)$
$=\log|3|-\log|2| = \log \frac{3}{2}$
Question 3: Evaluate the definite integral
$\int_1^2(4x^3-5x^2 + 6x +9)dx$
Answer:
Given integral: $I = \int_1^2(4x^3-5x^2 + 6x +9)dx$
Consider the integral $I = \int (4x^3-5x^2 + 6x +9)dx$
$\int (4x^3-5x^2 + 6x +9)dx = 4\frac{x^4}{4} -5\frac{x^3}{3}+6\frac{x^2}{2}+9x$
$= x^4 -\frac{5x^3}{3}+3x^2+9x$
So, we have the function of $x$ , $f(x) = x^4 -\frac{5x^3}{3}+3x^2+9x$
Now, by Second fundamental theorem of calculus, we have
$I = f(2)-f(1)$
$=\left \{ 2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right \} - \left \{ 1^4-\frac{5(1)^3}{3}+3(1)^2+9(1) \right \}$
$=\left \{ 16-\frac{40}{3}+12+18\right \} - \left \{ 1-\frac{5}{3}+3+9 \right \}$
$=\left \{ 46-\frac{40}{3}\right \} - \left \{ 13-\frac{5}{3}\right \}$
$=\left \{ 33-\frac{35}{3} \right \} = \left \{ \frac{99-35}{3} \right \}$
$= \frac{64}{3}$
Question 4: Evaluate the definite integral
$\int_0^\frac{\pi}{4}\sin 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}\sin 2x dx$
Consider the integral $\int \sin 2x dx$
$\int \sin 2x dx = \frac{-\cos 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{-\cos 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4})-f(0)$
$= \frac{-\cos 2(\frac{\pi}{4})}{2} + \frac{\cos 0}{2}$
$=\frac{1}{2} - 0$
$= \frac{1}{2}$
Question 5: Evaluate the definite integral
$\int_0^\frac{\pi}{2}\cos 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos 2x dx$
Consider the integral $\int \cos 2x dx$
$\int \cos 2x dx = \frac{\sin 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{\sin 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2})-f(0)$
$= \frac{1}{2}\left \{ \sin 2(\frac{\pi}{2}) - \sin 0 \right \}$
$= \frac{1}{2}\left \{ 0 - 0 \right \} = 0$
Question 6: Evaluate the definite integral
Answer:
Given integral: $\int_4^5 e^x dx$
Consider the integral $\int e^x dx$
$\int e^x dx = e^x$
So, we have the function of $x$ , $f(x) = e^x$
Now, by Second fundamental theorem of calculus, we have
$I = f(5) -f(4)$
$= e^5 -e^4$
$= e^4(e-1)$
Question 7: Evaluate the definite integral
$\int^\frac{\pi}{4}_0 \tan x dx$
Answer:
Given integral: $\int^\frac{\pi}{4}_0 \tan x dx$
Consider the integral $\int \tan x dx$
$\int \tan x dx = -\log|\cos x |$
So, we have the function of $x$ , $f(x) = -\log|\cos x |$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= -\log\left | \cos \frac{\pi}{4} \right | +\log|\cos 0|$
$= -\log\left | \cos \frac{1}{\sqrt2} \right | +\log|1|$
$= -\log\left | \frac{1}{\sqrt2} \right | + 0 = -\log (2)^{-\frac{1}{2}}$
$= \frac{1}{2}\log (2)$
Question 8: Evaluate the definite integral
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \text{cosec}\,x\,dx$
Answer:
Given integral: $\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec} x dx$
Consider the integral $\int\textup{cosec} x dx$
$\int \text{cosec}\,x\,dx = \log|\text{cosec}\,x - \text{cot}\,x|$
So, we have the function of $x$ , $f(x) = \log|\text{cosec}\,x - \text{cot}\,x|$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(\frac{\pi}{6})$
$= \log|\text{cosec}\,\frac{\pi}{4} - \text{cot}\,\frac{\pi}{4}| - \log|\text{cosec}\,\frac{\pi}{6} - \text{cot}\,\frac{\pi}{6}|$
$= \log|\sqrt2 -1 | - \log|2 -\sqrt3 |$
$= \log \left ( \frac{\sqrt2 -1}{2-\sqrt3} \right )$
Question 9: Evaluate the definite integral
$\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Answer:
Given integral: $\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Consider the integral $\int \frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$
So, we have the function of $x$ , $f(x) = \sin^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \sin^{-1}(1) -\sin^{-1}(0)$
$= \frac{\pi}{2} - 0$
$= \frac{\pi}{2}$
Question 10: Evaluate the definite integral
Answer:
Given integral: $\int_0^1\frac{dx}{1 + x^2}$
Consider the integral $\int\frac{dx}{1 + x^2}$
$\int\frac{dx}{1 + x^2} = \tan^{-1}x$
So, we have the function of $x$ , $f(x) =\tan^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \tan^{-1}(1) -\tan^{-1}(0)$
$= \frac{\pi}{4} - 0$
$= \frac{\pi}{4}$
Question 11: Evaluate the definite integral
$\int_2^3 \frac{dx}{x^2 -1 }$
Answer:
Given integral: $\int_2^3 \frac{dx}{x^2 -1 }$
Consider the integral $\int \frac{dx}{x^2 -1 }$
$\int \frac{dx}{x^2 -1 } = \frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log\left | \frac{3-1}{3+1} \right | - \log\left | \frac{2-1}{2+1} \right | \right \}$
$= \frac{1}{2}\left \{ \log\left | \frac{2}{4} \right | -\log\left | \frac{1}{3} \right | \right \}$
$= \frac{1}{2} \left\{ \log \frac{1}{2} - \log \frac{1}{3} \right\}$
$= \frac{1}{2} \log \frac{3}{2}$
Question 12: Evaluate the definite integral
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos^2 x dx$
Consider the integral $\int \cos^2 x dx$
$\int \cos^2 x dx = \int \frac{1+\cos 2x}{2} dx = \frac{x}{2}+\frac{\sin 2x }{4}$
$= \frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2}) -f(0)$
$= \frac{1}{2}\left \{ \left ( \frac{\pi}{2}-\frac{\sin \pi}{2} \right ) -\left ( 0+\frac{\sin 0}{2} \right ) \right \}$
$= \frac{1}{2}\left \{ \frac{\pi}{2}+0-0-0 \right \}$
$= \frac{\pi}{4}$
Question 13: Evaluate the definite integral
Answer:
Given integral: $\int_2^3\frac{xdx}{x^2+1}$
Consider the integral $\int \frac{xdx}{x^2+1}$
$\int \frac{x\,dx}{x^2+1}$
$= \frac{1}{2} \int \frac{2x}{x^2+1}\,dx$
$= \frac{1}{2} \log(1 + x^2)$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log(1+x^2)$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log(1+(3)^2)-\log(1+(2)^2) \right \}$
$= \frac{1}{2} \left\{ \log(10) - \log(5) \right\}$
$= \frac{1}{2} \log\left( \frac{10}{5} \right)$
$= \frac{1}{2} \log 2$
Question 14: Evaluate the definite integral
$\int_0^1\frac{2x+3}{5x^2+1}dx$
Answer:
Given integral: $\int_0^1\frac{2x+3}{5x^2+1}dx$
Consider the integral $\int \frac{2x+3}{5x^2+1}dx$
Multiplying by 5 both in numerator and denominator:
$\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx$
$=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx$
$= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx$
$= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
So, we have the function of $x$ , $f(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}$
$= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}$
Question 15: Evaluate the definite integral
Answer:
Given integral: $\int_0^1xe^{x^2}dx$
Consider the integral $\int xe^{x^2}dx$
Putting $x^2 = t$ which gives, $2xdx =dt$
As, $x\rightarrow0 ,t \rightarrow0$ and as $x\rightarrow1 ,t \rightarrow1$ .
So, we have now:
$\therefore I = \frac{1}{2}\int_0^1 e^t dt$
$= \frac{1}{2}\int e^t dt = \frac{1}{2} e^t$
So, we have the function of $x$ , $f(x) = \frac{1}{2} e^t$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \frac{1}{2}e^1 - \frac{1}{2}e^0$
$= \frac{1}{2}(e - 1)$
Question 16: Evaluate the definite integral
$\int_1^2\frac{5x^2}{x^2 + 4x +3}$
Answer:
Given integral: $I = \int_1^2\frac{5x^2}{x^2 + 4x +3}$
So, we can rewrite the integral as;
$I = \int_1^2 \frac{5x^2}{x^2 + 4x +3}= \int_1^2 \left ( 5 - \frac{20x+15}{x^2 + 4x +3} \right ) dx$
$= \int_1^2 5 dx - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$= [5x]_1^2 - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$I = 5-I_1$ where $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$ . ................(1)
Now, consider $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
Take numerator $20x+15 = A \frac{d}{dx}\left ( x^2+4x+3 \right )+B$
$= 2A x+(4A+B)$
We now equate the coefficients of x and constant term, we get
A=10 and B=-25
$\Rightarrow I_1 = 10\int_1^2 \frac{2x+4}{x^2+4x+3}dx -25\int_1^2 \frac{dx}{x^2+4x+3}$
Now take denominator $x^2+4x+3 = t$
Then we have $(2x+4)dx =dt$
$\Rightarrow I_{1} =10\int \frac{dt}{t} -25\int \frac{dx}{(x+2)^2-1^2}$
$= 10\log t -25\left [ \frac{1}{2}\log\left ( \frac{x+2-1}{x+2+1} \right ) \right ]$
$=[10\log(x^2+4x+3)]_1^2 -25 \left [ \frac{1}{2}\log\left ( \frac{x+1}{x+3} \right ) \right ]_1^2$
$= \left [ 10\log15 -10\log 8 \right ] -25 \left [ \frac{1}{2}\log\frac{3}{5} -\frac{1}{2}\log\frac{2}{4} \right ]$
$= \left [ 10\log5 +10\log3 -10\log4-10\log2 \right ] -\frac{25}{2}\left [ \log3 -\log5-\log2+\log4 \right ]$ $= \left ( 10+\frac{25}{2} \right )\log5 + \left ( -10-\frac{25}{2} \right )\log 4 + \left ( 10-\frac{25}{2} \right )\log 3 + \left ( -10+\frac{25}{2} \right )\log 2$ $= \frac{45}{2}\log5 -\frac{45}{2}\log4 - \frac{5}{2}\log3 +\frac{5}{2}\log2$
$= \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log \frac{3}{2}$
Then substituting the value of $I_{1}$ in equation (1), we get
$I= 5 -\left ( \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log\frac{3}{2} \right )$
$= 5 -\frac{5}{2}\left ( 9\log\frac{5}{4}-\log\frac{3}{2} \right )$
Question 17: Evaluate the definite integral
$\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Consider the integral $\int (2\sec^2x + x^3 + 2)dx$
$\int (2\sec^2x + x^3 + 2)dx = 2\tan x +\frac{x^4}{4}+2x$
So, we have the function of $x$ , $f(x) = 2\tan x +\frac{x^4}{4}+2x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= \left \{ \left ( 2\tan\frac{\pi}{4}+\frac{1}{4}\left ( \frac{\pi}{4} \right )^4+2\frac{\pi}{4} \right ) - \left ( 2\tan 0 +0 +0 \right ) \right \}$
$=2\tan\frac{\pi}{4} +\frac{\pi^4}{4^5} +\frac{\pi}{2}$
$+2+\frac{\pi}{2}+\frac{\pi^4}{1024}$
Question 18: Evaluate the definite integral
$\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Answer:
Given integral: $\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Consider the integral $\int (\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
can be rewritten as: $-\int (\cos^2\frac{x}{2} - \sin^2\frac{x}{2})dx = -\int_0^{\pi} \cos x dx$
$= \sin x$
So, we have the function of $x$ , $f(x) =\sin x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\pi) - f(0)$
$\Rightarrow \sin \pi - \sin 0$
$= 0 - 0$
$= 0$
Question 19: Evaluate the definite integral
Answer:
Given integral: $\int_0^2\frac{6x+3}{x^2+ 4}$
Consider the integral $\int \frac{6x+3}{x^2+ 4}$
can be rewritten as: $\int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx$
$= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx$
$= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
So, we have the function of $x$ , $f(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(2) - f(0)$
$= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}$ $=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0$
$=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0$
$=3\log \frac{8}{4} +\frac{3\pi}{8}$
or we have $=3\log 2 +\frac{3\pi}{8}$
Question 20: Evaluate the definite integral
$\int_0^1 \left( x e^x + \text{sin}\,\frac{\pi x}{4} \right) dx$
Answer:
Given integral: $\int_0^1 \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$
Consider the integral $\int \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$
can be rewritten as: $x\int e^x dx - \int \left \{ \left ( \frac{d}{dx}x \right )\int e^x dx \right \}dx +\left \{ \frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}} \right \}$
$= xe^x -\int e^x dx -\frac{4\pi}{\pi} \cos \frac{x}{4}$
$= xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
So, we have the function of $x$ , $f(x) = xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) - f(0)$
$= \left (1.e^t-e^t - \frac{4}{\pi}\cos \frac{\pi}{4} \right ) - \left ( 0.e^0 -e^0 -\frac{4}{\pi}\cos 0 \right )$
$= e-e -\frac{4}{\pi}\left ( \frac{1}{\sqrt2} \right )+1+\frac{4}{\pi}$
Question 21: Choose the correct answer
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$ equals
(A) $\frac{\pi}{3}$
(B) $\frac{2\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{12}$
Answer:
Given definite integral $\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$
Consider $\int \frac{dx}{1 +x^2} = \tan^{-1}x$
we have then the function of x, as $f(x) = \tan^{-1}x$
By applying the second fundamental theorem of calculus, we will get
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2} = f(\sqrt3) - f(1)$
$= \tan^{-1}\sqrt{3} - \tan^{-1}1$
$=\frac{\pi}{3} - \frac{\pi}{4}$
$= \frac{\pi}{12}$
Therefore the correct answer is $\frac{\pi}{12}$ .
Question 22: Choose the correct answer
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$ equals
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{12}$
(C) $\frac{\pi}{24}$
(D) $\frac{\pi}{4}$
Answer:
Given definite integral $\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$
Consider $\int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}$
Now, putting $3x = t$
we get, $3dx=dt$
Therefore we have, $\int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}$
$= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
we have the function of x , as $f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
So, by applying the second fundamental theorem of calculus, we get
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)$
$= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0$
$= \frac{1}{6}\tan^{-1}1 - 0$
$= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}$
Therefore the correct answer is $\frac{\pi}{24}$.
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.8 is:
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Exercise 7.9 Class 12 Maths discusses maily evaluation of definite integrals.
Exercise 7.9 Class 12 Maths has 22 questions.
Indefinite integrals are defined without upper and lower limits i.e its range is not defined.
Direct questions from this exercise are asked in the Board examination. Hence this exercise cannot be avoided at any cost.
After learning Application of integrals, one can easily find the quantities of area, volume, displacement etc.
Questions are moderate to difficult but regular practice can help get through the difficulty.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check,
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters