NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.4 - Differential Equations

NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.4 - Differential Equations

Komal MiglaniUpdated on 08 May 2025, 02:25 PM IST

Let us take the trajectory of a car going uphill whose steepness is quantified by the angle of the incline and not by the distance or the height. This type of situation can be represented by a homogeneous differential equation whose relation between the variables is the same if the variables are multiplied by the same factor.

This Story also Contains

  1. Class 12 Maths Chapter 9 Exercise 9.4 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.4
  3. Topics covered in Chapter 9 Differential Equations: Exercise 9.4
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

The NCERT Solutions for Class 12 Maths Chapter 9 – Exercise 9.4 are detailed in describing the steps involved in solving equations of this nature. Properly prepared by experienced members of staff of Careers360 according to the CBSE 2025–26 syllabus, the solutions help students perform well in solving homogeneous differential equations step by step. Solving Class 12 Maths NCERT Exercise 9.4 makes students ready to recognize homogeneous forms, substitute correctly, and solve problems with confidence. These are basic skills not only for board exams, but also for entrance exams such as JEE Main and Advanced.

Class 12 Maths Chapter 9 Exercise 9.4 Solutions: Download PDF

This material provides easy solutions to all the questions of Exercise 9.4 of Differential Equations. The PDF can be downloaded by the students for practice and enhancement of the chapter for board and and competitive

Download PDF

NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.4


Question 1: Show that the given differential equation is homogeneous and solve each of them. $(x^2 + xy)dy = (x^2 + y^2)dx$

Answer:

The given diffrential eq can be written as
$\frac{dy}{dx}=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Let $F(x,y)=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Now, $F(\lambda x,\lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}$
$=\frac{x^{2}+y^{2}}{x^{2}+xy} = \lambda ^{0}F(x,y)$

Hence, it is a homogeneous equation.

To solve it put y = vx
Diff
erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v +x\frac{dv}{dx} = \frac{x^{2}+(vx)^{2}}{x^{2}+x(vx)}\\$

$v +x\frac{dv}{dx} = \frac{1+v^{2}}{1+v}$

$x\frac{dv}{dx} = \frac{(1+v^{2})-v(1+v)}{1+v} = \frac{1-v}{1+v}$

$( \frac{1+v}{1-v})dv = \frac{dx}{x}$

$( \frac{2}{1-v}-1)dv = \frac{dx}{x}$
Integrating on both side, we get;
$\\-2\log(1-v)-v=\log x -\log k\\ $

$v= -2\log (1-v)-\log x+\log k\\ $

$v= \log\frac{k}{x(1-v)^{2}}\\$
Again substitute the value $y = \frac{v}{x}$ ,we get;

$\\\frac{y}{x}= \log\frac{kx}{(x-y)^{2}}\\ \frac{kx}{(x-y)^{2}}=e^{y/x}\\ (x-y)^{2}=kxe^{-y/x}$
This is the required solution of given diff. equation

Question 2: Show that the given differential equation is homogeneousand solve each of them. $y' = \frac{x+y}{x}$

Answer:

the above differential eq can be written as,

$\frac{dy}{dx} = F(x,y)=\frac{x+y}{x}$ ............................(i)

Now, $F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x} = \lambda ^{0}F(x,y)$
Thus the given differential eq is a homogeneous equaion
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx}= \frac{x+vx}{x} = 1+v$
$\\x\frac{dv}{dx}= 1\\ $

$dv = \frac{dx}{x}$
Integrating on both sides, we get; (and substitute the value of $v =\frac{y}{x}$ )

$\\v =\log x+C\\ $

$\frac{y}{x}=\log x+C\\ y = x\log x +Cx$
this is the required solution

Question 3: Show that the given differential equation is homogeneous and solve each of them.

$(x-y)dy - (x+y)dx = 0$

Answer:

The given differential eq can be written as;

$\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)$ ....................................(i)

$F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)$
Hence it is a homogeneous equation.

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}\\$

$x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}$

$\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}$
Integrating on both sides, we get;

$\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C$
again substitute the value of $v=y/x$
$\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C\\$

$\tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C\\ $

$tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C$

This is the required solution.

Question 4: Show that the given differential equation is homogeneous and solve each of them.

$(x^2 - y^2)dx + 2xydy = 0$

Answer:

we can write it as;

$\frac{dy}{dx}= -\frac{(x^{2}-y^{2})}{2xy} = F(x,y)\ (let\ say)$ ...................................(i)

$F(\lambda x,\lambda y) = \frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)} = \lambda ^{0}.F(x,y)$
Hence it is a homogeneous equation

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx} = \frac{ x^{2}-(vx)^{2}}{2x(vx)} =\frac{v^{2}-1}{2v}$
$\\x\frac{dv}{dx} =\frac{v^{2}+1}{2v}\\ \frac{2v}{1+v^{2}}dv=\frac{dx}{x}$
integrating on both sides, we get

$\log (1+v^{2})= -\log x +\log C = \log C/x$
$\\= 1+v^{2} = C/x\\ = x^2+y^{2}=Cx$ .............[ $v =y/x$ ]
This is the required solution.

Question 5: Show that the given differential equation is homogeneous and solve it.

$x^2\frac{dy}{dx} = x^2 - 2y^2 +xy$

Answer:

$\frac{dy}{dx}= \frac{x^{2}-2y^{2}+xy}{x^{2}} = F(x,y)\ (let\ say)$

$F(\lambda x,\lambda y)= \frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda .\lambda )xy}{(\lambda x)^{2}} = \lambda ^{0}.F(x,y)$ ............(i)
Hence it is a homogeneous eq

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}= 1-2v^{2}+v\\ x\frac{dv}{dx} = 1-2v^{2}\\$

$\frac{dv}{1-2v^{2}}=\frac{dx}{x}$

$1/2[\frac{dv}{(1/\sqrt{2})^{2}-v^{2}}] = \frac{dx}{x}$

On integrating both sides, we get;

$\frac{1}{2\sqrt{2}}\log (\frac{1/\sqrt{2}+v}{1/\sqrt{2}-v}) = \log x +C$
after substituting the value of $v= y/x$

$\frac{1}{2\sqrt{2}}\log (\frac{x+\sqrt{2}y}{x-\sqrt{2}y}) = \log \left | x \right | +C$

This is the required solution

Question 6: Show that the given differential equation is homogeneous and solve it.

$xdy - ydx = \sqrt{x^2 + y^2}dx$

Answer:

$\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y)$ .................................(i)

$F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)$
henxe it is a homogeneous equation

Now, to solve substitute y = vx

Diff erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}$

$=\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}$

On integrating both sides,

$\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C$
Substitute the value of v=y/x , we get

$\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\$

$y+\sqrt{x^{2}+y^{2}} = Cx^{2}$

Required solution

Question 7: Solve.

$\left\{x\cos\left(\frac{y}{x} \right ) + y\sin\left(\frac{y}{x} \right ) \right \}ydx = \left\{y\sin\left(\frac{y}{x} \right ) - x\cos\left(\frac{y}{x} \right ) \right \}xdy$

Answer:

$\frac{dy}{dx} =\frac{x \cos(y/x)+y\sin(y/x)}{y\sin(y/x)-x\cos(y/x)}.\frac{y}{x} = F(x,y)$ ......................(i)
By looking at the equation we can directly say that it is a homogenous equation.

Now, to solve substitute y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx} =\frac{v \cos v+v^{2}\sin v}{v\sin v-\cos v}\\$

$=x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v-\cos v}\\$

$=(\tan v-1/v)dv = \frac{2dx}{x}$

integrating on both sides, we get

$\\=\log(\frac{\sec v}{v})= \log (Cx^{2})\\$

$=\sec v/v =Cx^{2}$
substitute the value of v= y/x , we get

$\\\sec(y/x) =Cxy \\ $

$xy \cos (y/x) = k$

Required solution

Question 8: Solve.

$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right ) = 0$

Answer:

$\frac{dy}{dx}=\frac{y-x \sin(y/x)}{x} = F(x,y)$ ...............................(i)

$F(\mu x, \mu y)=\frac{\mu y-\mu x \sin(\mu y/\mu x)}{\mu x} = \mu^{0}.F(x,y)$
it is a homogeneous equation

Now, to solve substitute y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx}= v- \sin v = -\sin v$
$\Rightarrow -\frac{dv}{\sin v} = -(cosec\ v)dv=\frac{dx}{x}$

On integrating both sides we get;

$\\\Rightarrow \log \left | cosec\ v-\cot v \right |=-\log x+ \log C\\ $

$\Rightarrow cosec (y/x) - \cot (y/x) = C/x$

$= x[1-\cos (y/x)] = C \sin (y/x)$ Required solution

Question 9: Solve.

$ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0$

Answer:

$\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)$ ..................(i)

$\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)$

hence it is a homogeneous eq

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}\\ =x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}\\$

$=[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}$
integrating on both sides, we get; ( substituting v =y/x)

$\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)\\\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\$

$\Rightarrow \log (y/x)-1=Cy$

This is the required solution of the given differential eq

Question 10: Solve.

$\left(1 + e^{\frac{x}{y}} \right )dx + e^\frac{x}{y}\left(1-\frac{x}{y}\right )dy = 0$

Answer:

$\frac{dx}{dy}=\frac{-e^{x/y}(1-x/y)}{1+e^{x/y}} = F(x,y)$ .......................................(i)

$= F(\mu x,\mu y)=\frac{-e^{\mu x/\mu y}(1-\mu x/\mu y)}{1+e^{\mu x/\mu y}} =\mu^{0}.F(x,y)$
Hence it is a homogeneous equation.

Now, to solve substitute x = yv

Diff erentiating on both sides wrt $x$
$\frac{dx}{dy}= v +y\frac{dv}{dy}$

Substitute this value in equation (i)

$\\=v+y\frac{dv}{dy} = \frac{-e^{v}(1-v)}{1+e^{v}} \\$

$=y\frac{dv}{dy} = -\frac{v+e^{v}}{1+e^{v}}\\$

$=\frac{1+e^{v}}{v+e^{v}}dv=-\frac{dy}{y}$

Integrating on both sides, we get;

${100} \log(v+e^{v})=-\log y+ \log c =\log (c/y)\\$

$=[\frac{x}{y}+e^{x/y}]= \frac{c}{y}\\\Rightarrow x+ye^{x/y}=c$
This is the required solution of the diff equation.

Question 11: Solve for particular solution.

$(x + y)dy + (x -y)dx = 0;\ y =1\ when \ x =1$

Answer:

$\frac{dy}{dx}=\frac{-(x-y)}{x+y} =F(x,y)$ ..........................(i)

We can clearly say that it is a homogeneous equation.

Now, to solve substitute y = vx

Diff erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}=\frac{v-1}{v+1}\\$

$\Rightarrow x\frac{dv}{dx} = -\frac{(1+v^{2})}{1+v}$

$\frac{1+v}{1+v^{2}}dv = [\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}]dv=-\frac{dx}{x}$

On integrating both sides

$\\=\frac{1}{2}[\log (1+v^{2})]+\tan^{-1}v = -\log x +k\\$

$=\log(1+v^{2})+2\tan^{-1}v=-2\log x +2k\\$

$=\log[(1+(y/x)^{2}).x^{2}]+2\tan^{-1}(y/x)=2k\\$]

$=\log(x^{2}+:y^{2})+2\tan^{-1}(y/x) = 2k$ ......................(ii)

Now, y=1 and x= 1


$\\=\log 2 +2\tan^{-1}1=2k\\ $

$=\pi/2+\log 2 = 2k\\$

After substituting the value of 2k in eq. (ii)

$\log(x^{2}+y^2)+2\tan^{-1}(y/x)=\pi/2+\log 2$

This is the required solution.

Question 12: Solve for particular solution.

$x^2dy + (xy + y^2)dx = 0; y =1\ \textup{when}\ x = 1$

Answer:

$\frac{dy}{dx}= \frac{-(xy+y^{2})}{x^{2}} = F(x,y)$ ...............................(i)

$F(\mu x, \mu y)=\frac{-\mu^{2}(xy+(\mu y)^{2})}{(\mu x)^{2}} =\mu ^{0}. F(x,y)$
Hence it is a homogeneous equation

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i), we get

$\\=v+\frac{xdv}{dx}= -v- v^{2}\\ $

$=\frac{xdv}{dx}=-v(v+2)\\ $

$=\frac{dv}{v+2}=-\frac{dx}{x}\\$

$=1/2[\frac{1}{v}-\frac{1}{v+2}]dv=-\frac{dx}{x}$

Integrating on both sides, we get;

$\\=\frac{1}{2}[\log v -\log(v+2)]= -\log x+\log C\\$

$=\frac{v}{v+2}=(C/x)^{2}$

replace the value of v=y/x

$\frac{x^{2}y}{y+2x}=C^{2}$ .............................(ii)

Now y =1 and x = 1

$C = 1/\sqrt{3}$
therefore,

$\frac{x^{2}y}{y+2x}=1/3$

Required solution

Question 13: Solve for particular solution.

$\left [x\sin^2\left(\frac{y}{x} \right ) - y \right ]dx + xdy = 0;\ y =\frac{\pi}{4}\ when \ x = 1$

Answer:

$
\begin{aligned}
& \frac{d y}{d x}=\frac{-\left[x \sin ^2(y / x)-y\right]}{x}=F(x, y) \cdots \cdots \cdots \cdots \cdots \cdots . . . . . . .(i) \\
& F(\mu x, \mu y)=\frac{-\left[\mu x \sin ^2(\mu y / \mu x)-\mu y\right]}{\mu x}=\mu^0 . F(x, y)
\end{aligned}
$


Hence it is a homogeneous eq
Now, to solve substitute $\mathrm{y}=\mathrm{vx}$
Differentiating on both sides wrt $x$

$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$


Substitute this value in equation (i)
on integrating both sides, we get;

$
\begin{aligned}
& -\cot v=\log |x|-C \\
& =\cot v=\log |x|+\log C
\end{aligned}
$


On substituting $\mathrm{v}=\mathrm{y} / \mathrm{x}$

$
=\cot (y / x)=\log |C x| .
$


Now, $y=\pi / 4 @ x=1$

$
\begin{aligned}
& \cot (\pi / 4)=\log C \\
& =C=e^1
\end{aligned}
$

put this value of C in eq (ii)

$
\cot (y / x)=\log |e x|
$


Required solution.

Question 14: Solve for particular solution.

$\frac{dy}{dx} - \frac{y}{x} + \textup{cosec}\left (\frac{y}{x} \right ) = 0;\ y = 0 \ \textup{when}\ x = 1$

Answer:

$\frac{dy}{dx} = \frac{y}{x} -cosec(y/x) =F(x,y)$ ....................................(i)

the above eq is homogeneous. So,
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}=v- cosec\ v\\ $

$=x\frac{dv}{dx} = -cosec\ v\\$

$=-\frac{dv}{cosec\ v}= \frac{dx}{x}\\$

$=-\sin v dv = \frac{dx}{x}$

on integrating both sides, we get;

$\\=cos\ v = \log x +\log C =\log Cx\\$

$=\cos(y/x)= \log Cx$ .................................(ii)

now y = 0 and x =1 , we get

$C =e^{1}$

put the value of C in eq 2

$\cos(y/x)=\log \left | ex \right |$

Question 15: Solve for particular solution.

$2xy + y^2 - 2x^2\frac{dy}{dx} = 0 ;\ y = 2\ \textup{when}\ x = 1$

Answer:

The above eq can be written as;

$\frac{dy}{dx}=\frac{2xy+y^{2}}{2x^{2}} = F(x,y)$
By looking, we can say that it is a homogeneous equation.

Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}= \frac{2v+v^{2}}{2}\\ $

$=x\frac{dv}{dx} = v^{2}/2\\ $

$= \frac{2dv}{v^{2}}=\frac{dx}{x}$

integrating on both sides, we get;

$\\=-2/v=\log \left | x \right |+C\\$

$=-\frac{2x}{y}=\log \left | x \right |+C$ .............................(ii)

Now, y = 2 and x =1, we get

C =-1
put this value in equation(ii)

$\\=-\frac{2x}{y}=\log \left | x \right |-1\\$

$\Rightarrow y = \frac{2x}{1- \log x}$

Question 16: A homogeneous differential equation of the from $\frac{dx}{dy}= h\left(\frac{x}{y} \right )$ can be solved by making the substitution.

(A) $y = vx$

(B) $v = yx$

(C) $x = vy$

(D) $x =v$

Answer:

$\frac{dx}{dy}= h\left(\frac{x}{y} \right )$
for solving this type of equation put x/y = v
x = vy

option C is correct

Question 17: Which of the following is a homogeneous differential equation?

(A) $(4x + 6x +5)dy - (3y + 2x +4)dx = 0$

(B) $(xy)dx - (x^3 + y^3)dy = 0$

(C) $(x^3 +2y^2)dx + 2xydy =0$

(D) $y^2dx + (x^2 -xy -y^2)dy = 0$

Answer:

Option D is the right answer.

$y^2dx + (x^2 -xy -y^2)dy = 0$
$\frac{dy}{dx}=\frac{y^{2}}{x^{2}-xy-y^{2}} = F(x,y)$
we can take out lambda as a common factor and it can be cancelled out

Also check -

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Topics covered in Chapter 9 Differential Equations: Exercise 9.4


TopicDescriptionExample
Homogeneous Differential EquationA DE where $\frac{d y}{d x}=f(x, y)$ and $f(x, y)$ is homogeneous of degree 0.$\frac{d y}{d x}=\frac{x+y}{x-y}$
Checking HomogeneityCheck if replacing x=λx, y=λy keeps the equation unchanged.$f(\lambda x, \lambda y)=f(x, y) \Rightarrow$ homogeneous
Substitution MethodUse substitution y=vx (or x=vy) to simplify the equation.$y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Converting to Separable FormAfter substitution, reduce the DE to a variable separable form.$\frac{d v}{d x}=\frac{1-v^2}{2 v}$
Solving Using IntegrationIntegrate both sides to get general/particular solution.$\int \frac{2 v}{1-v^2} d v=\int d x$
General and Particular SolutionsFind general solutions and then use initial conditions (if any) to find particular ones.General: $y=v x$, Particular: Use values to find $C$
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Also Read-

Frequently Asked Questions (FAQs)

Q: What number of multiple-choice questions are present in the exercise 9.4 Class 12 Maths?
A:

Two objective type questions with 4 choices are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.5.

Q: What is the first step in solving the problems given in the Class 12 Maths chapter 9 exercise 9.4?
A:

The first step is to verify the given differential equation is homogeneous or not.

Q: How many examples are solved in topic 9.4.2?
A:

3 examples are given.

Q: Whether the concept of integration is required to solve the problems of Class 12th Maths chapter 6 exercise 9.4?
A:

Yes, the concepts of basic integrals studied in the NCERT Class 12 Maths chapter 7 is required to solve exercise 9.4

Q: The number of exercises coming under 9.4 are……….
A:

Three exercises are coming under the topic 9.4

Q: What is the topic discussed before the homogeneous differrential equation?
A:

The differential equations of  variable separable form.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 31 Aug'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 31 Aug'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello Aspirant,

Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.

Hello,

Yes, you can. If you missed the first compartment exam, you can appear in the second compartment exam as per CBSE rules.

Hope it helps !

Hello Prisha

As you have compartment in Mathematics and you wish to change your stream to Humanities you have 2 options from here on:

1. You could try to study and clear your compartment of Mathematics.

2. You can change your stream to Humanities but you will need to repeat from Class 11th so you will need 2 years from now to clear Class 12th.

My personal suggestion will be to choose Option 1. Trust me I have dealt with this feeling myself and wanted to choose Option 2 but I worked hard and cleared my exams. I was scared not only in Mathematics but Physics, Chemistry and even Computer Science.
At last, it's on you what you want to choose.

Thank You!

HELLO,

The GUJCET merit list is calculated by considering 60% of the marks obtained in Class 12 and 40% of the GUJCET score. CBSE students are also eligible to compete with GSEB students, as the merit list is prepared by combining the Class 12 scores with the GUJCET performance.

Merit Calculation:
  • The merit list is calculated by combining the scores from both class and the GUJCET exam
  • This means that both your performance in the class 12 board exams and the GUJCET exam are considered when determining your rank

CBSE Students and GUJCET:

  • CBSE students can appear for the GUJCET exam, even though they are not from the Gujrat Board
  • For CBSE students, the 60% weightage for class 12 marks will be based on their performance in Physics, Chemistry, and Mathematics in their class 12 board exams
  • The remaining 40% weightage will be given to their GUJCET score.

Hope this Helps!

Hello Aspirant,

Yes, your CBSE migration certificate from March 2024 is totally good for reporting in 2025. These certificates do not randomly expire or anything. As long as you’ve got the real one and it is not scribbled then it is fine. No one’s gonna hassle you about the date, just make sure it’s in decent shape and you’re all set.